Lecture 10 Other Solution Concepts and Game Models

CS580

Ruta Mehta

Some slides are borrowed from V. Conitzer's presentations.

So far

Normal-form games Multiple rational players, single shot, simultaneous move

- Nash equilibrium
 - □ Existence
 - □ Computation in two-player games.

Today:

Issues with NE

□ Multiplicity

□ Selection: How players decide/reach any particular NE

Possible Solutions

□ Dominance: Dominant Strategy equilibria

- Arbitrator/Mediator: Correlated equilibria, Coarsecorrelated equilibria
- Communication/Contract: Stackelberg equilibria, Nash bargaining

Other Games

□ Extensive-form Games, Bayesian Games

Dominance

Strict dominance: For player *i* move *s* strictly dominates *t* if no matter what others play, *s* gives her better payoff than *t*

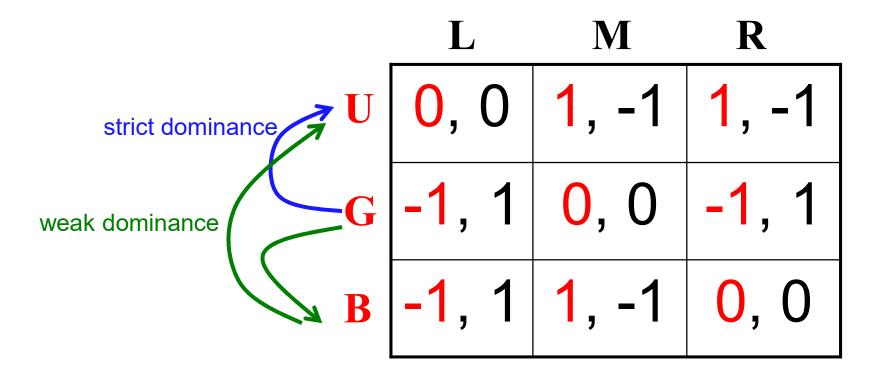
 \Box for all s_{-i} , $u_i(s, s_{-i}) > u_i(t, s_{-i})$

■ *s* weakly dominates *t* if

-i = "the player(s) other than i"

 \Box for all s_{-i} , $u_i(s, s_{-i}) \ge u_i(t, s_{-i})$; and

$$\Box$$
 for some s_{-i} , $u_i(s, s_{-i}) > u_i(t, s_{-i})$



Dominant Strategy Equilibrium

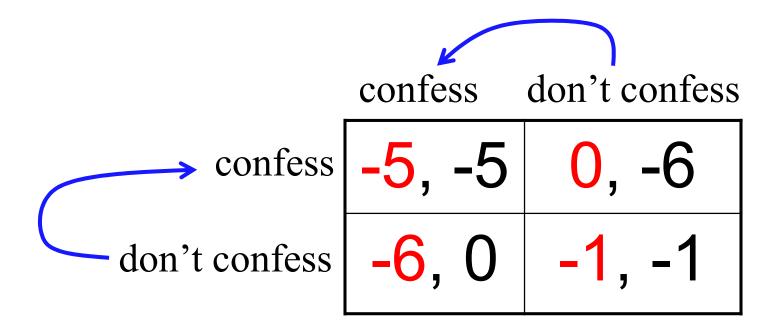
Playing move *s* is best for me, no matter what others play.

For each player *i*, there is a (move) strategy s_i that (weakly) dominates all other strategies.
 □ for all i, s'_i, s_{-i}, u_i(s_i, s_{-i}) ≥ u_i(s'_i, s_{-i});

Example?

Prisoner's Dilemma

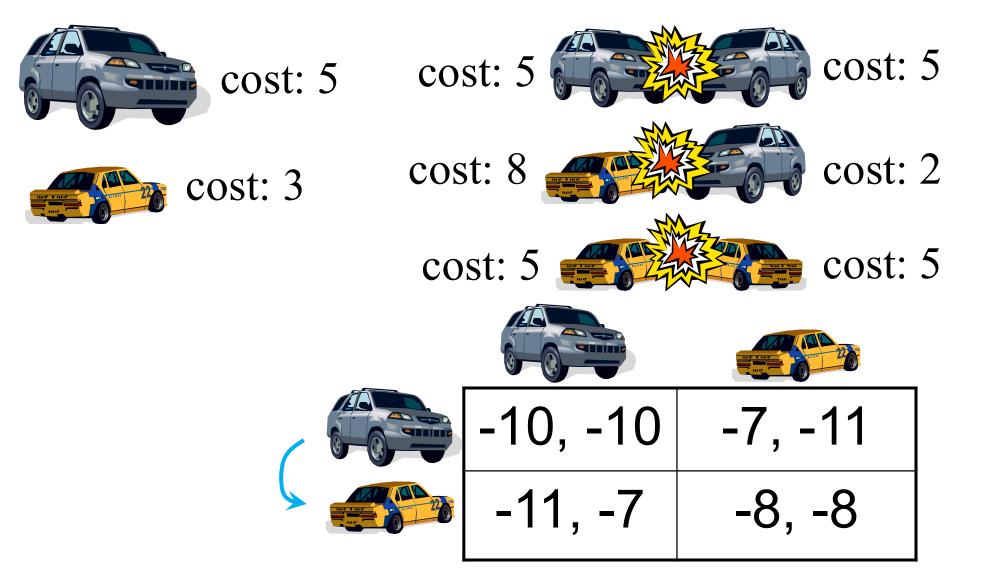
- Pair of criminals has been caught
- They have two choices: {confess, don't confess}



"Should I buy an SUV?"

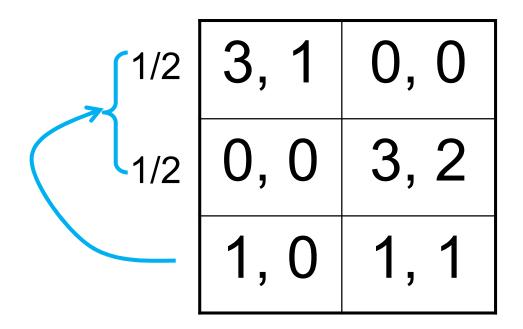
purchasing cost

accident cost



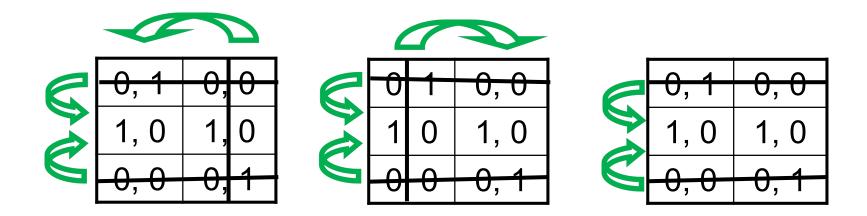
Dominance by Mixed strategies

• Example of dominance by a mixed strategy:

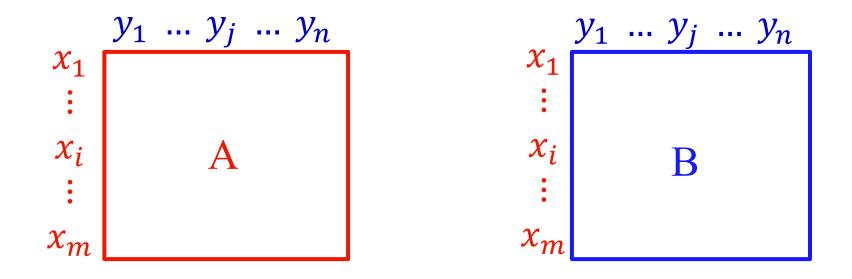


Iterated dominance: path (in)dependence

Iterated weak dominance is path-dependent: sequence of eliminations may determine which solution we get (if any) (whether or not dominance by mixed strategies allowed)

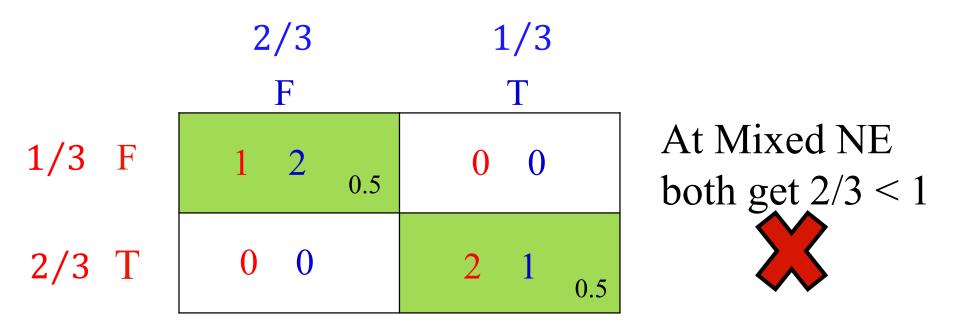


Iterated strict dominance is path-independent: elimination process will always terminate at the same point (whether or not dominance by mixed strategies allowed)



NE: $x^T Ay \ge x'^T Ay$, $\forall x'$ $x^T By \ge x^T By'$, $\forall y'$ No one plays Why? dominated strategies. What if they can discuss beforehand?

Players: {Alice, Bob}
Two options: {Football, Tennis}



Instead they agree on $\frac{1}{2}(F, T)$, $\frac{1}{2}(T, F)$ Payoffs are (1.5, 1.5) Fair!

Needs a common coin toss!

Correlated Equilibrium – (CE) (Aumann'74)

- Mediator declares a joint distribution P over $S = \times_i S_i$
- Tosses a coin, chooses $s = (s_1, ..., s_n) \sim P$.
- Suggests s_i to player i in private
- P is at equilibrium if each player wants to follow the suggestion when others do.
 □ U_i(s_i, P_(si,.)) ≥ U_i(s'_i, P_(si,.)), ∀s'_i ∈ S₁
 ∑_{s_i∈S_i} P(s_i, s_i)U_i(s_i, s_i) Linear in P variables!

CE for 2-Player Case

• Mediator declares a joint distribution $P = \begin{bmatrix} p_{11} & \dots & p_{1n} \\ \vdots & \vdots & \vdots \\ p_{m1} & \dots & p_{mn} \end{bmatrix}$

Tosses a coin, chooses $(i, j) \sim P$.

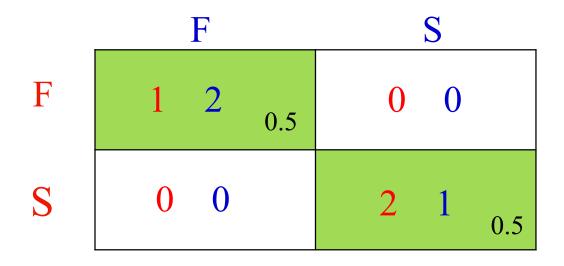
■ Suggests *i* to Alice, *j* to Bob, in private.

P is a CE if each player wants to follow the suggestion, when the other does.

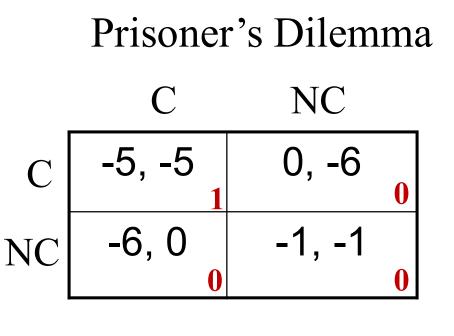
Given Alice is suggested *i*, she knows Bob is suggested $j \sim P(i, .)$

 $\langle A(i,.), P(i,.) \rangle \ge \langle A(i',.), P(i,.) \rangle \quad : \forall i' \in S_1$ $\langle B(.,j), P(.,j) \rangle \ge \langle B(.,j'), P(.,j) \rangle \quad : \forall j' \in S_2$

Players: {Alice, Bob} Two options: {Football, Shopping}



Instead they agree on $\frac{1}{2}(F, S)$, $\frac{1}{2}(S, F)$ CE! Payoffs are (1.5, 1.5) Fair!



NC is dominated

Rock-Paper-Scissors (Aumann) R Ρ S 0, 0 1, 0 0, 1 R 0 1/61, 0 0, 0 0, 1 P 1/6 1, 0 0, 0 0, 1 S 1/6 0 1/6

When Alice is suggested R Bob must be following $P_{(R,.)} = (0,1/6,1/6)$ Following the suggestion gives her 1/6 While P gives 0, and S gives 1/6.

Computation: Linear Feasibility Problem

Game (A, B). Find, joint distribution $P = \begin{bmatrix} p_{11} & \dots & p_{1n} \\ \vdots & \vdots & \vdots \\ p_{n} \end{bmatrix}$

$$\begin{bmatrix} 1 & 1 & 1 \\ \vdots & \vdots \\ n_1 & \dots & p_{mn} \end{bmatrix}$$

s.t.
$$\begin{split} \sum_{j} A_{ij} p_{ij} &\geq \sum_{j} A_{i'j} p_{ij} \quad \forall i, i' \in S_1 \\ \sum_{i} B_{ij} p_{ij} &\geq \sum_{i} B_{ij'} p_{ij} \quad \forall j, j' \in S_2 \\ \sum_{ij} p_{ij} &= 1; \quad p_{ij} \geq 0, \quad \forall (i, j) \end{split}$$

N-player game: Find distribution P over $S = \times_{i=1}^{N} S_i$ s.t. $U_i(s_i, P_{(s_i, .)}) \ge U_i(s'_i, P_{(s_i, .)}), \forall s_i, s'_i \in S_i$ $\sum_{s \in S} P(s) = 1$ $\sum_{s_{-i} \in S_{-i}} U_i(s_i, s_{-i}) P(s_i, s_{-i})$ Linear in P variables!

Computation: Linear Feasibility Problem

N-player game: Find distribution P over $S = \times_{i=1}^{N} S_i$ s.t. $U_i(s_i, P_{(i,.)}) \ge U_i(s'_i, P_{(s_i,.)}), \forall s_i, s'_i \in S_i$ $\bigwedge \sum_{s \in S} P(s) = 1$ $\sum_{s_{-i} \in S_{-i}} U_i(s_i, s_{-i}) P(s_i, s_{-i})$ Linear in P variables!

Can optimize any convex function as well!

Coarse- Correlated Equilibrium

- After mediator declares P, each player opts in or out.
- Mediator tosses a coin, and chooses s ~ P.
- If player *i* opted in, then the mediator suggests her s_i in private, and she has to obey.
- If she opted out, then (knowing nothing about s) plays a fixed strategy t ∈ S_i
- At equilibrium, each player wants to opt in, if others are.

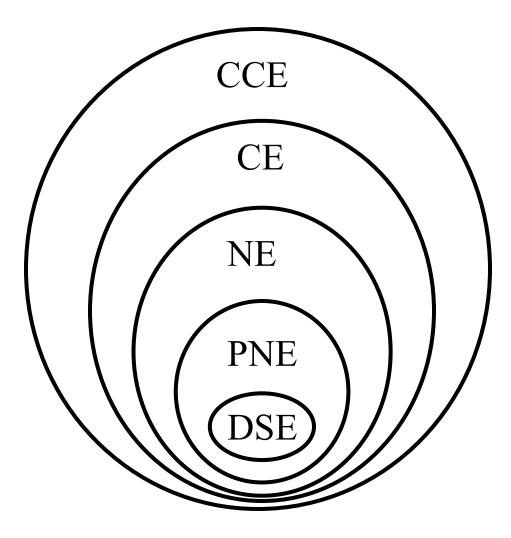
 $U_i(P) \ge U_i(t, P_{-i}), \ \forall t \in S_i$

Where P_{-i} is joint distribution of all players except *i*.

Importance of (Coarse) CE

- Natural dynamics quickly arrive at approximation of such equilibria.
 No-regret, Multiplicative Weight Update (MWU)
- Poly-time computable in the size of the game.Can optimize a convex function too.

Show the following

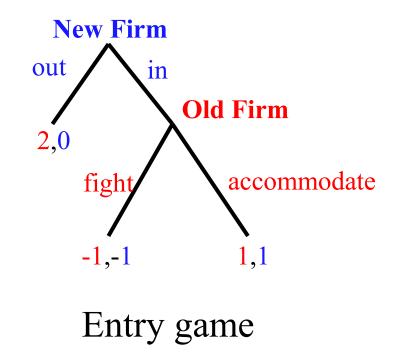


Extensive-form Game

Players move one after another

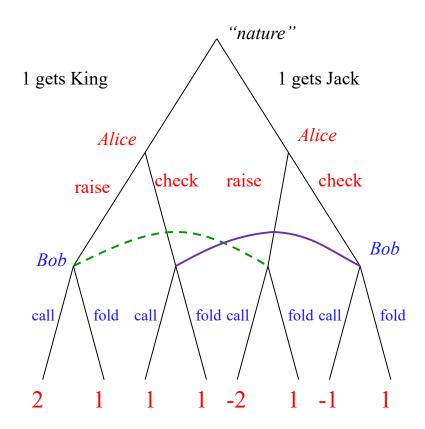
- □ Chess, Poker, etc.
- □ Tree representation.

Strategy of a player: What to play at each of its node.

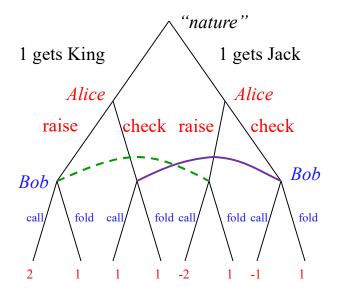


A poker-like game

- Both players put 1 chip in the pot
- Alice gets a card (King is a winning card, Jack a losing card)
- Alice decides to raise (add one to the pot) or check
- Bob decides to call (match) or fold (P1 wins)
- If Bob called, Alice's card determines pot winner



Poker-like game in normal form

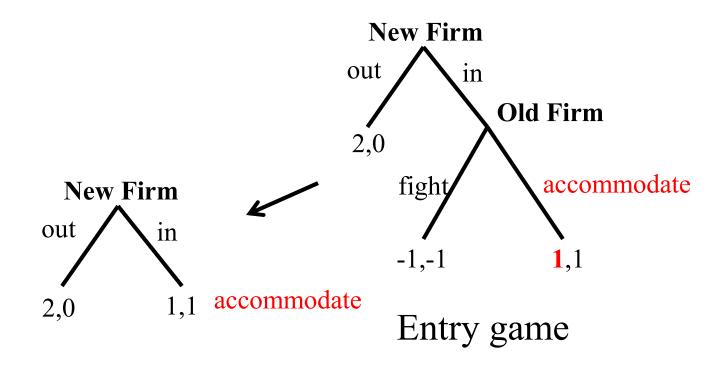


	сс	cf	fc	ff
rr	<mark>0, 0</mark>	<mark>0, 0</mark>	1, -1	1, -1
rc	.5,5	1.5, -1.5	<mark>0, 0</mark>	1, -1
cr	5, .5	5, .5	1, -1	1, -1
cc	0, 0	1, -1	0, 0	1, -1

Can be exponentially big!

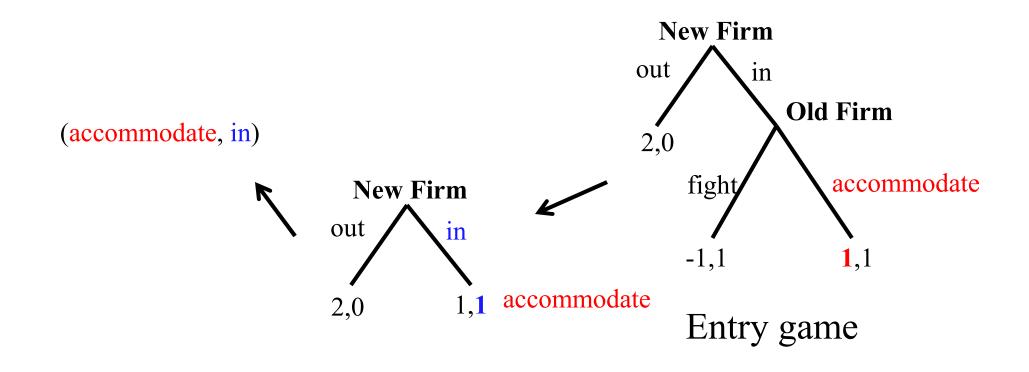
Sub-Game Perfect Equilibrium

- Every sub-tree is at equilibrium
- Computation when perfect information (no nature/chance move): Backward induction



Sub-Game Perfect Equilibrium

- Every sub-tree is at equilibrium
- Computation when perfect information (no nature/chance move): Backward induction



Corr. Eq. in Extensive form Game

• How to define?

□ CE in its normal-form representation.

Is it computable?

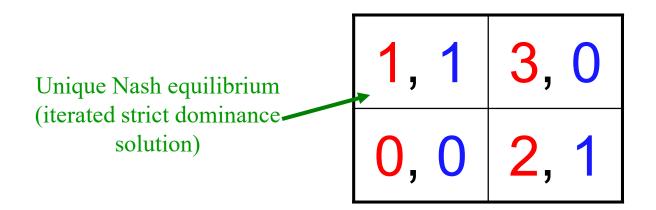
 \Box Recall: exponential blow up in size.

• Can there be other notions?

See "Extensive-Form Correlated Equilibrium: Definition and Computational Complexity" by von Stengel and Forges, 2008.

Commitment (Stackelberg strategies)

Commitment

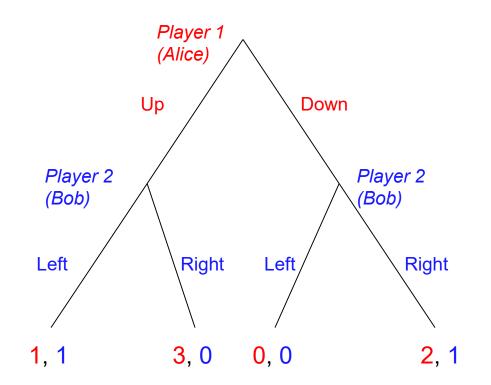


von Stackelberg

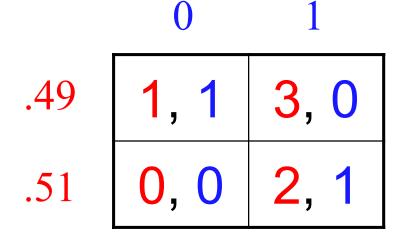
- Suppose the game is played as follows:
 - Alice commits to playing one of the rows,
 - Bob observes the commitment and then chooses a column
- Optimal strategy for Alice: commit to Down

Commitment: an extensive-form game

For the case of committing to a pure strategy:



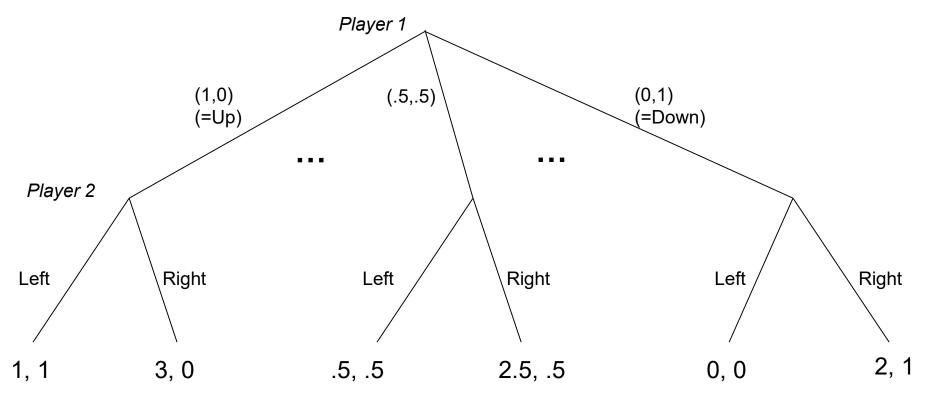
Commitment to mixed strategies



Also called a Stackelberg (mixed) strategy

Commitment: an extensive-form game

• ... for the case of committing to a mixed strategy:



- Economist: Just an extensive-form game, nothing new here
- Computer scientist: Infinite-size game! Representation matters

Computing the optimal mixed strategy to commit to [Conitzer & Sandholm EC'06]

- Player 1 (Alice) is a leader.
- Separate LP for every column $j^* \in S_2$:

maximize $\sum_{i} x_i A_{ij^*}$ Alice's utility when Bob plays j^* subject to $\forall j$, $(x^T B)_{j^*} \ge (x^T B)_j$ Playing j^* is best for Bob $x \ge 0$, $\sum_{i} x_i = 1$ x is a probability distribution

Among soln. of all the LPs, pick the one that gives max utility.

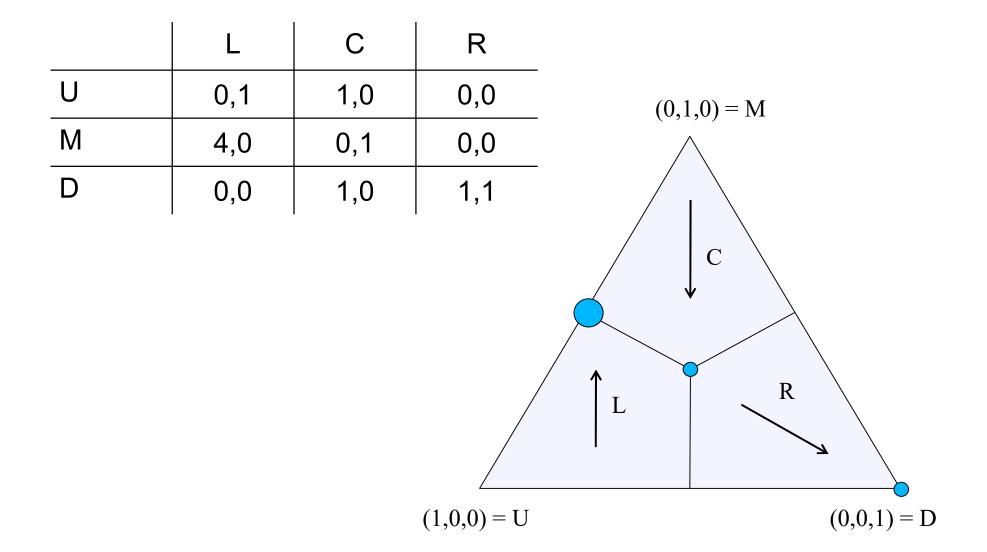
On the game we saw before

maximize
$$1x_1 + 0 x_2$$

subject to
 $1 x_1 + 0 x_2 \ge 0 x_1 + 1 x_2$
 $x_1 + x_2 = 1$
 $x_1 \ge 0, x_2 \ge 0$

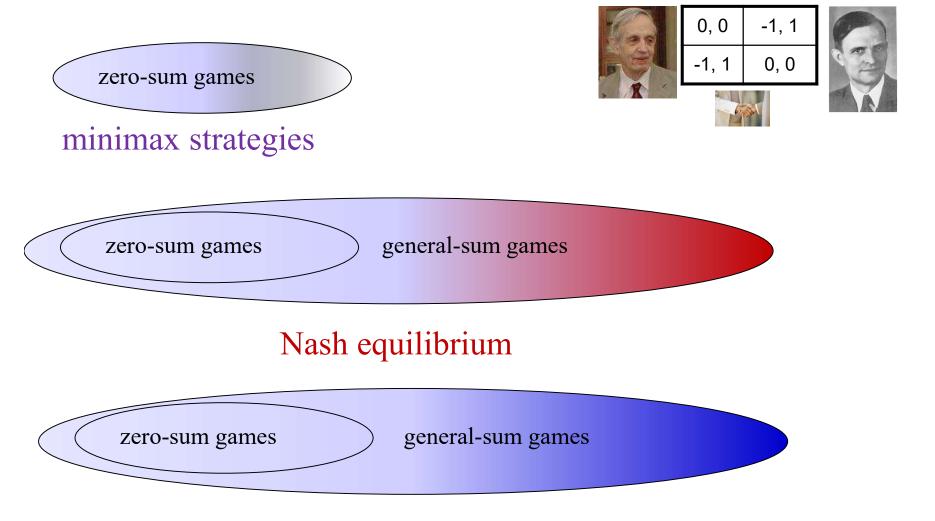
maximize $3 x_1 + 2 x_2$ subject to $0 x_1 + 1 x_2 \ge 1 x_1 + 0 x_2$ $x_1 + x_2 = 1$ $x_1 \ge 0, x_2 \ge 0$

Visualization



Generalizing beyond zero-sum games

Minimax, Nash, Stackelberg all agree in zero-sum games

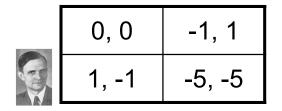


Stackelberg mixed strategies

Other nice properties of commitment to mixed strategies

- No equilibrium selection problem
- Leader's payoff at least as good as any Nash eq. or even correlated eq.

von Stengel & Zamir [GEB '10]



Bayesian Games

So far in Games,

- Complete information (each player has perfect information regarding the element of the game).

Bayesian Game

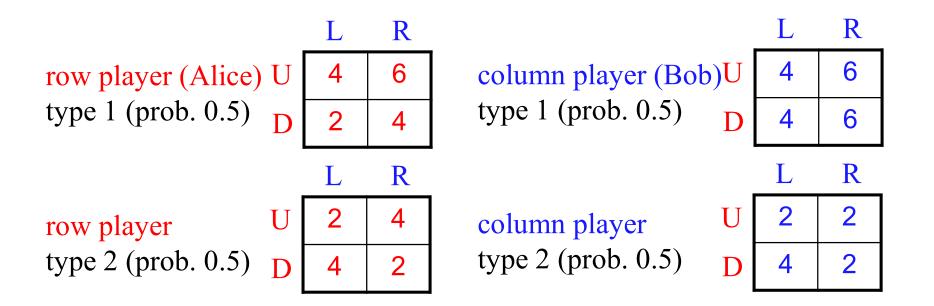
- A game with incomplete information
- Each player has initial private information, type.
- Bayesian equilibrium: solution of the Bayesian game

Bayesian game

• Utility of a player depends on her type and the actions taken in the game

- \Box θ_i is player i's type, $\theta_i \sim \Theta_i$. Utilily when θ_i type and s play is $u_i(\theta_i, s)$
- Each player knows/learns its own type, but only distribution of others (before choosing action)
 - Pure strategy $s_i: \Theta_i \to S_i$ (where S_i is i's set of actions)

(In general players can also receive signals about other players' utilities; we will not go into this)



Car Selling Game

- A seller wants to sell a car
- A buyer has private value 'v' for the car w.p. P(v)
- Sellers knows P, but not v
- Seller sets a price 'p', and buyer decides to buy or not buy.
- If sell happens then the seller gets p, and buyer gets (v-p).

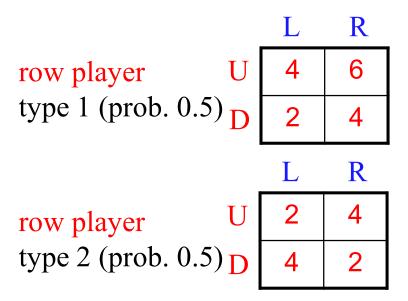
$$S_1 = \text{All possible prices, } \Theta_1 = \{1\}$$

$$S_2 = \{\text{buy, not buy}\}, \quad \Theta_2 = \text{All possible 'v'}$$

$$U_1(1, (p, \text{buy})) = p, \qquad U_1(1, (p, \text{not buy})) = 0$$

$$U_2(v, (p, \text{buy})) = v - p, \qquad U_2(v, (p, \text{not buy})) = 0$$

Converting Bayesian games to normal form



column player	J
type 1 (prob. 0.5)	Ι

column player U type 2 (prob. 0.5) D

	4	6	
	L	R	
	2	2	
)	4	2	

	type 1: L type 2: L	type 1: L type 2: R	type 1: R type 2: L	type 1: R type 2: R
type 1: U type 2: U	3 , 3	4, 3	4, 4	5, 4
type 1: U type 2: D	4, 3.5	4, 3	4, 4.5	4, 4
type 1: D type 2: U	2, 3.5	3 , 3	3, 4.5	4, 4
type 1: D type 2: D	3, 4	3, 3	3, 5	3, 4

exponential blowup in size

Bayes-Nash equilibrium

- A profile of strategies is a Bayes-Nash equilibrium if it is a Nash equilibrium for the normal form of the game
 Minor caveat: each type should have >0 probability
- Alternative definition:
 - \Box Mixed strategy of player i, $\sigma_i: \Theta_i \to \Delta(S_i)$
 - □ for every i, for every type θ_i , for every alternative action $z_i \in \Delta(S_i)$, we must have:
 - $\sum_{\boldsymbol{\theta}_{-i}} \underline{P(\boldsymbol{\theta}_{-i})} u_{i}(\boldsymbol{\theta}_{i}, \sigma_{i}(\boldsymbol{\theta}_{i}), \sigma_{-i}(\boldsymbol{\theta}_{-i})) \geq \sum_{\boldsymbol{\theta}_{-i}} P(\boldsymbol{\theta}_{-i}) u_{i}(\boldsymbol{\theta}_{i}, z_{i}, \sigma_{-i}(\boldsymbol{\theta}_{-i}))$ $\prod_{p \neq i} P(\boldsymbol{\theta}_{p})$

Again what about corr. eq. in Bayesian games?

Notion of signaling.

Look up the literature.