CS 580

Algorithmic Game Theory

Instructor: Ruta Mehta
TA: Rucha Kulkarni
Game Theory

Multiple self-interested agents interacting in the same environment

Deciding what to do.

Q: What to expect? How good is it? Can it be controlled?
Game of Chicken (Traffic Light)
Algorithmic Game Theory

AGT, in addition, focuses on designing efficient algorithms to compute solutions necessary to make accurate prediction.
- **What to expect**

 Research-oriented Course

 - Exposure to key concepts and proof techniques from AGT
 - Explore research problems and novel questions

- **What is expected from you**

 - Pre-req: Basic knowledge of linear-algebra, linear programming, probability, algorithms.
 - Energetic participation in class
 - Research/Survey Project (individually or in a group of two).
Instructor: Ruta Mehta (Me)

TA: Rucha Kulkarni

Office hours:

- Ruta: Wed 2:30-3:30pm in Siebel 3218
- Rucha: Mon 2:30-3:30pm in TBD
Useful links

- Webpage: https://courses.engr.illinois.edu/cs580/fa2021

- Piazza Page: piazza.com/illinois/fall2021/cs580

Check webpage/piazza at least twice a week for the updates.

HW0 is already posted!
Grading:

- 3 homeworks – 30% (10,10,10)
- Research/Survey Project – 45%
 - Work – 20%
 - Presentation – 12.5%
 - Report – 12.5%
- Final Exam – 22%
- Class participation – 3%

HW0 is for self-study and carry no points.
References

- N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani (editors), Algorithmic Game Theory, 2007. (Book available online for free.)

Recent papers, and other lecture notes that we will post on course website.
3 Broad Goals
Goal #1

Understand outcomes arising from interaction of intelligent and self-interested agents.

Games and Equilibria
Prisoner’s Dilemma

Two thieves caught for burglary.
Two options: {confess, not confess}

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>-6</td>
</tr>
<tr>
<td>N</td>
<td>-6</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>-5</td>
<td>-5</td>
</tr>
</tbody>
</table>
Prisoner’s Dilemma

Two thieves caught for burglary.
Two options: \{confess, not confess\}

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>-1</td>
<td>-6</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>-5</td>
</tr>
</tbody>
</table>

Only stable state
Rock-Paper-Scissors

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>P</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>S</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

No pure stable state! Both playing \((1/3, 1/3, 1/3)\) is the only NE.

Nash Eq.: No player gains by deviating individually. Why?
- Normal form games and Nash equilibrium existence

- Computation:
 - Zero-sum: minmax theorem,
 - General: (may be) Lemke-Howson algorithm

- Complexity: PPAD-complete

- Other equilibrium notions – markets, security games

- Incomplete information, Bayesian Nash

- Collusion, Core, Nash bargaining
Tragedy of commons

Limited but open resource shared by many.

Bad outcome!

Stable: Over use => Disaster
Goal #2

Analyze quality of the outcome arising from strategic interaction, i.e. OPT vs NE.

Price of Anarchy
Braess’ Paradox

60 commuters

Commute time: 1.5 hours
Braess’ Paradox

60 commuters

Commute time: 1.5 hours
Braess’ Paradox

60 commuters

Commute time: 2 hours
Braess’ Paradox

60 commuters

Price of Anarchy (PoA): \(\frac{\text{worst NE}}{\text{OPT}} = \frac{2}{1.5} = \frac{4}{3} \)

Can not be worse!
- Network routing games
- Congestion (potential) games
- PoA in linear congestion games
 - Smoothness framework
- Iterative play and convergence
Goal #3

Designing rules to ensure “good” outcome under strategic interaction among selfish agents.

Mechanism Design
At the core of large industries

Online markets – eBay, Uber/Lyft, TaskRabbit, cloud markets

Spectrum auction – distribution of public good. enables variety of mobile/cable services.

Search auction – primary revenue for google!
Tons of important applications

Fair Division – school/course seats assignment, kidney exchange, air traffic flow management, …

Voting, review, coupon systems.

So on …
- **MD without money**
 - **Fair division**
 - Divisible items: Competitive equilibrium
 - Indivisible items: EF1, EFX, MMS, Max. Nash Welfare, …
 - **stable matching, Arrow’s theorem (voting)**

- **MD with money**
 - First price auction, second price auction, VCG
 - Generalized second price auction for search (Google)
 - Optimal auctions: Myerson auction and extensions
Fun Fact!

Olympics 2012 Scandal
Check out Women’s doubles badminton tournament

Video of the fist controversial match
Food for Thought

You and your friend choose a number ...
Food for Thought

You and your friend choose a number …

What will you choose? What if $+/- 50$?

What are Nash equilibria?