cs579 Computational Complexity

Problem Set #6

Prof. Michael A. Forbes

Due: Thu., 2023-11-30 12:00

All problems are of equal value.

- 1. (Arora-Barak 12.7) Let $f : \{0,1\}^n \to \{0,1\}$ be a boolean function. Recall that the *degree* of f over a field \mathbb{F} (denoted $\deg_{\mathbb{F}} f$) is the minimum degree of a polynomial $p \in \mathbb{F}[x_1, \ldots, x_n]$ such that f(x) = p(x) for all $x \in \{0,1\}^n$. Show that for any field \mathbb{F} , $\deg_{\mathbb{F}} f \leq D(f)$, where D(f) is the deterministic decision-tree complexity of f.
- 2. (Normal Form for Formulas) Given an unbounded fan-in {AND, OR, NOT}-formula of size-s, where size here is the number of {AND, OR}-gates, show that there is an equivalent formula of size $s' \leq s$ where all negations occur at the bottom of the formula, and all {AND, OR}-gates have fan-in ≥ 2 . Show that s' is bounded by the number of leaves of the resulting formula.
- 3. Let $\ell : \{0,1\}^* \to \mathbb{N}$ be a *length* function, meaning that $\ell(x)$ is computable in $\mathsf{poly}(|x|)$ time and $\mathsf{poly}(|x|) \le \ell(x) \le \mathsf{poly}(|x|)$. A function $f : \{0,1\}^* \to \{0,1\}^*$ is *downward self-reducible* with respect to ℓ if
 - If $\ell(x) = 0$ then f(x) is computable in poly(|x|) time.
 - In general, x can be computed in poly(|x|) time given oracle access to f on inputs $\{y : \ell(y) < \ell(x)\}.$
 - (a) Prove that, under a suitable encoding, 3SAT is downward self-reducible with respect to $\ell(\varphi)$ being the number of variables in φ .
 - (b) Show that, under a suitable encoding, computing the number of perfect matchings of a graph is downward self-reducible with respect to some natural length function.
 - (c) (Arora-Barak Problem 8.9) Any downward self-reducible function is computable in poly(|x|) space (ie, PSPACE when f is a language).
- 4. (Arora-Barak 13.3) Prove that a single tape Turing machine (one whose input tape is also its read-write tape), takes $\Omega(n^2)$ time to decide the palindrome language $\mathsf{PAL} = \{x : x = x^R \in \{0,1\}^*\}$, where x^R is the reverse of the string x.