cs579 Computational Complexity

Problem Set #4

Prof. Michael A. Forbes

Due: Thu., 2023-10-26 12:00

All problems are of equal value.

- 1. Show that if $NP \subseteq BPP$ then NP = RP.
- 2. (Multiplicative Chernoff Bound). Let X_1, \ldots, X_n be independent random variables taking values over [0, 1]. Let $X = \sum_i X_i$. Show that
 - (a) For $r \in (-\infty, \ln 2]$, prove that $\mathbb{E}[e^{rX}] \leq e^{r\mathbb{E}[X] + r^2\mathbb{E}[X]}$. You may use without proof that $1 + x \leq e^x$ for all $x \in \mathbb{R}$, and that $e^x \leq 1 + x + x^2$ for $x \leq \ln 2$.
 - (b) Explain how the above used the independence of the X_i .
 - (c) Apply Markov's inequality $(\Pr[Y \ge a] \le \mathbb{E}[Y]/a)$ to e^{rX} , and optimize over r, to conclude that

i. For
$$0 \le \epsilon \le \ln 4$$
, $\Pr[X \ge (1 + \epsilon)\mathbb{E}[X]] \le e^{-\epsilon^2 \mathbb{E}[X]/4}$

ii. For
$$\epsilon \geq \ln 4$$
, $\Pr[X \geq (1+\epsilon)\mathbb{E}[X]] \leq 2^{-\epsilon\mathbb{E}[X]/2}$

iii. For
$$0 \le \epsilon \le 1$$
, $\Pr[\mathsf{X} \le (1-\epsilon)\mathbb{E}[\mathsf{X}]] \le e^{-\epsilon^2\mathbb{E}[\mathsf{X}]/4}$

iv. (Additive Chernoff Bound) For
$$\epsilon \geq 0$$
, $\Pr[|\mathsf{X} - \mathbb{E}[\mathsf{X}]| \geq \epsilon \cdot n] \leq 2\mathrm{e}^{-\epsilon^2 n/4}$

Note that the additive Chernoff bound suffices for BPP amplification, but the multiplicative bound is in general stronger and sometimes needed (e.g. consider $\mathbb{E}[X] = \lg n$ and the resulting bound for $\Pr[X \ge 2\mathbb{E}[X]]$).

3. There are various ways to define a randomized version of NP. One definition is that of Merlin-Arthur proofs, where Merlin is a powerful (but untrusted) wizard who needs to convince a skeptical mortal (Arthur) that a statement is true. The complexity class MA is defined by a randomized polynomial-time TM M, such that

$$x \in L \implies \exists y \in \{0,1\}^{\mathsf{poly}(n)} \Pr[M(x,y) = 1] = 1,$$

$$x \notin L \implies \forall y \in \{0,1\}^{\mathsf{poly}(n)} \Pr[M(x,y) = 1] \le \frac{1}{2}.$$

That is, true statements have proofs that make Arthur always accept, while any "proof" of a false statement is rejected with constant probability. If we changed $\frac{1}{2}$ to 0 then this would just be NP.

1

Show that if $coNP \subseteq MA$ then the polynomial hierarchy collapses.

4. Show that TIME $\left(2^{2^{\mathsf{poly}(n)}}\right) \not\subseteq \mathsf{P/poly}$.