cs579 Computational Complexity

Problem Set #3

Prof. Michael A. Forbes

Due: Thu., 2023-10-05 12:00

All problems are of equal value.

- 1. (Sipser #8.17) Let A be the language of properly nested parentheses. For example, (()) and (()(()))() in A, but)(is not. Show that A is in L.
- 2. (Sipser #9.19) Define the unique-sat problem to be $\mathsf{USAT} = \{\langle \varphi \rangle : \varphi \text{ is a boolean formula that has a unique satisfying assignment}\}$. Show that $\mathsf{USAT} \in \mathsf{P}^{\mathsf{SAT}}$.
- 3. (Arora-Barak Problem 6.3) Describe a decidable language in P/poly that is not in P.
- 4. (Sipser #9.13, #9.14): Consider the function pad : $\Sigma^* \times \mathbb{N} \to \Sigma^* \#^*$ that is defined as follows. Let $\operatorname{pad}(s, \ell) = s \#^j$, where $j = \max(0, \ell - m)$ and m is the length of s. Thus $\operatorname{pad}(s, \ell)$ simply adds enough copies of the new symbol # to the end of s so that the length of the result is at least ℓ . For any language A and function $f : \mathbb{N} \to \mathbb{N}$ define the language $\operatorname{pad}(A, f(m))$ as

$$pad(A, f(m)) = \{ pad(s, f(m)) : s \in A, m = |s| \}$$

- (a) Prove that, if $A \in \mathsf{TIME}(n^6)$, then $\mathrm{pad}(A, n^2) \in \mathsf{TIME}(n^3)$.
- (b) Recall that $\mathsf{EXP} = \mathsf{TIME}(2^{\mathsf{poly}(n)})$, and define $\mathsf{NEXP} = \mathsf{NTIME}(2^{\mathsf{poly}(n)})$. Prove that, if $\mathsf{EXP} \neq \mathsf{NEXP}$, then $\mathsf{P} \neq \mathsf{NP}$.
- 5. (Sipser #9.16) Prove that $\mathsf{TQBF} \notin \mathsf{SPACE}(n^{1/3})$.
- 6. (Sipser #9.24, #9.25)
 - (a) Define the function majority_n : $\{0, 1\}^n \to \{0, 1\}$ as majority_n $(x_1, \ldots, x_n) = 1$ iff $\sum_i x_i \ge n/2$. Thus the majority_n function returns the majority vote of the inputs. Directly show that the majority_n function can be computed by size $O(n^2)$ size circuits.
 - (b) Recall that you may consider circuits that output strings over $\{0, 1\}$ by designating several output gates. Let $\operatorname{add}_n : \{0, 1\}^{2n} \to \{0, 1\}^{n+1}$ take the sum of two *n*-bit binary integers and produce the n + 1 bit result. Show that you can compute the add_n function with O(n) size circuits.
 - (c) By recursively dividing the number of inputs in half, and using part (b), show that the majority_n function can be computed by size $O(n \log n)$ size circuits.