
cs579 Computational Complexity Out: Thu., 2023-08-24

Problem Set #1

Prof. Michael A. Forbes Due: Thu., 2023-09-07 12:00

All problems are of equal value.
Note: there are hints on the last page, for those who want them.

1. (Sipser #7.12) Let MODEXP = {(a, b, c, p) : a, b, c, and p are integers written in binary,
such that ab ≡ c mod p}. Show that MODEXP ∈ P.

2. (Sipser #7.24) Let ϕ be a 3CNF-formula. An ̸=-assignment to the variables of ϕ is one where
each clause contains two literals with unequal truth values. In other words, an ̸=-assignment
satisfies ϕ without assigning three true literals in any clause.

(a) Show that the negation of any ̸=-assignment to ϕ is also an ̸=-assignment.

(b) Let ̸= SAT be the collection of 3CNF-formulas that have an ̸=-assignment. Show that
we obtain a polynomial time reduction from 3SAT to ̸= SAT by replacing each clause
ci = (y1 ∨ y2 ∨ y3) with the two clauses (y1 ∨ y2 ∨ zi) and (zi ∨ y3 ∨ b), where zi is a new
variable for each clause ci and b is a single additional new variable.

(c) Conclude that ̸= SAT is NP-complete.

3. (Sipser #7.25) A cut in an undirected graph is a separation of the vertices V into two disjoint
subsets S and T . The size of a cut is the number of edges that have one endpoint in S and the
other in T . Let MAXCUT = {⟨G, k⟩ : G has a cut of size k or more}. Show that MAXCUT is
NP-complete.

4. (Sipser #7.32) Let U = {⟨M,x,#t⟩ : non-deterministic TM M accepts input x within t steps
on at least one branch}. Show that U is NP-complete.

5. (Arora-Barak #1.15) Define a Turing Machine (TM) M to be oblivious if its head movements
do not depend on the input but only on the input length. That is, M is oblivious if for every
input x ∈ {0, 1}⋆ and i ∈ N, the location of M ’s head at the i-th step of execution on input x
is only a function of |x| and i.

A function t : N → N is (weakly) time-constructible if the function that maps the string 1n to
the string 1t(n) is computable in time O(t(n)).

Show that for every weakly time-constructible function t : N → N, if L ∈ TIME(t(n)) (on a
one-tape TM), then there is an oblivious two-tape TM that decides L in time O(t(n)2).

6. (Sipser #7.36) Show that if P = NP, then a polynomial time algorithm exists that produces a
satisfying assignment when given a satisfiable boolean formula.

1

Some hints.

1. Note that the most obvious algorithm doesn’t run in polynomial time. Try it first where b is a
power of 2.

3. Show that ̸= SAT ≤p MAXCUT. The variable gadget for variable x is a collection of 3c notes
labeled with x and another 3c nodes labeled with x, where c is the number of clauses. All
nodes labeled x are connected with all nodes labeled x. The clause gadget is a triangle of
three edges connecting three nodes labeled with the literals appearing in the clause. Do not
use the same node in more than one clause gadget. Prove that this reduction works.

6. The algorithm you are asked to provide computes a function, but NP contains languages, not
functions. The P = NP assumption implies that SAT is in P, so testing satisfiability is solvable
in polynomial time. But the assumption doesn’t say how this test is done, and the test may
not reveal satisfying assignments. You must show that you can find them anyway. Use the
satisfiability tester repeatedly to find the assignment bit-by-bit.

2

