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Function Definition in Isabelle/HOL

@ Non-recursive definitions with definition
No problem

@ Primitive-recursive (over datatypes) with primrec
Termination proved automatically internally. Definition syntactically
restricted to only allow recursive subcalls on immediate recursive
subcomponents.

o Well-founded recursion with fun
Proved automatically, but user must take care that recursive calls are
on “obviously” smaller arguments
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@ Well-founded recursion with function
User must (help to) prove termination
(~ later)
@ Role your own, via definition of the functions graph
use of choose operator, and other tedious approaches, but can work
when built-in methods don't.

datatype: The General Case
datatype (o1,...,am)T = G Ti1...7T1n
...
| Gk Tk1- T,

@ Term Constructors:
CG:iimit=...=7Tin=(01,...,am)T

o Distinctness: Cj Xj...Xin, # Cj yj...Yjn if i £ j

o Injectivity: (Cj x1...Xnp, = Ci y1...Yn) =

(X1 =Yy1 Ao AXn, = Vi)

Distinctness and Injectivity are applied by simp
Induction must be applied explicitly
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Function Definition in Isabelle/HOL primrec Example

datatype ’a list = Nil | Cons ’a "’a list"

primrec app :: "’a list = ’a list = ’a list
where
"app Nil ys = ys" |

"app (Cons x xs) ys = Cons x (app xs ys)"

primrec: The General Case
If 7 is a datatype with constructors Ci,...,Cy, then f :: - =7 =7/
can be defined by primitive recursion by:

fxioo (CGyie Yim) - Xm=n |

foxie  (Cr Yka-Yhom) -+ Xm = Tk

The recursive calls in r; must be structurally smaller, i.e. of the form
fai...yij...am where y;;is a recursive subcomonent of (G yi1...¥in,)-
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datatype nat = 0 | Suc nat datatype ’a option = None | Some ’a
Functions on nat are definable by primrec! Important application:
primrec f::nat=> ... where ...=’a option ~ partial function:
£0=...1 None =~ no result
f (Sucn) =...fn ... Some x ~ result of x
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option Example Term Rewriting
primrec lookup :: ’k = (kx’v)list = ’v option Term rewriting means . ..
where Terminology: equation becomes rewrite rule
lookup k [ ] = None |

lookup k (x#xs) =

Using a set of equations / = r from left to right
(if fst x = k then Some(snd x) else lookup k xs)

As long as possible (possibly forever!)
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substitution = mapping of variables to terms

Equations: (Suc m(; i : i guc(m + n) gg ° L(zl)r:issapplicable to term t[s] if there is a substitution o such that
(0<m) = True 3)
(Suc m < Suc n) (m<n) (4) e sis an instance of /
@ Result: t[o(r)]
0+5ucO < SucO+x g @ Also have theorem: t[s] = t[o(r)]

Suc0 < SucO+x (2)

Rewriting: Suc 0 < Suc(0+x) @

0 < 0+x 3)

True -
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o Equation: 0+ n=n Rewrite rules can be conditional:

Term: a+ (0+ (b+ ¢)) 1Pi. ;P = 1=r
Substitution: o = {n+ b+ c}

Result: a+ (b+ c)

Theorem: a+ (0+ (b+c¢))=a+ (b+¢)

is applicable to term t[s] with substitution o if:
e o(/)=sand

@ (P1),...,0(Pp) are provable (possibly again by rewriting)
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Three kinds of variables in Isabelle: .
o Logically: free = bound at meta-level
@ bound: Vx. x =x o Operationally:

o free variabes are fixed
o schematic: 7x =7x o schematic variables are instantiated by substitutions

o free: x =x

(“unknown", a.k.a. meta-variables)
Can be mixed in term or formula: Vb. y. f 7ay = b

From x to 7x Basic Simplification

State lemmas with free variables: Goal: 1. [Py;...;Py] =C
lemma app Nil2 [simp]: "xs @ [ ] = xs" proof (simp add: eq_thmp ... eq_thm,)
done

Simplify (mostly rewrite) Py;...; Py and C using
After the proof: Isabelle changes xs to ?xs (internally): o lemmas with attribute simp

?xs @ [ ] = 7xs o rules from primrec and datatype
Now usable with arbitrary values for ?7xs © additional lemmas eq-thmy ... eq-thmy
Example: rewriting @ assumptions Pi;...; Py,
rev(a @ [ ]) = rev a Variations:
using app_Nil2 with o = {?xs — a} o (simp ...del: ...) removes simp-lemmas

@ add and del are optional
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auto versus simp

@ auto acts on all subgoals
@ simp acts only on subgoal 1
@ auto applies simp and more
e simp concentrates on rewriting

e auto combines rewriting with resolution
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Termination

Simplification may not terminate.

Isabelle uses simp-rules (almost) blindly left to right.

Example: f(x) = g(x), g(x) = f(x) will not terminate.
[Piy...Pal=1=r

is only suitable as a simp-rule only if / is “bigger" than r and each P;.

(n<m)=(Sucn<Sucm) NO
(n <m) = (n <Sucm)=True YES
Sucn<m= (n<m)=True NO
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Simplification of [Aq,.
e Simplify A; to A}
o Simplify [As, ..., Ay] = B using A}
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Rewriting with Definitions (definition)

Definitions do not have the simp attirbute.

They must be used explicitly:

proof (simp add: f.def...)
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Assumptions and Simplification Ignoring Assumptions

LA = B:

Sometimes need to ignore assumptions; can introduce non-termination.
How to exclude assumptions from simp:
proof (simp (no_asm_simp)...)

Simplify only the conclusion, but use assumptions

proof (simp (no_asm use)...)
Simplify all, but do not use assumptions

proof (simp (no_asm)...)
Ignore assumptions completely
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Ordered Rewriting

Problem: ?x+?y =?y+7x does not terminate

Solution: Permutative simp-rules are used only if the term becomes
lexicographically smaller.

Example: b+a~a+bbutnota+b~b+a.

For types nat, int, etc., commutative, associative and distributive laws
built in.

Example: proof simp yields:

((B+A)+((2::nat)« C))+ (A+ B) ~
2% A+ (2xB+2x%C)
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Preprocessing

simp-rules are preprocessed (recursively) for maximal simplification power:

-A +— A=False
A—B —» A=B
ANB — A B
Vx.A(x) —  A(?x)
A +— A=True

Example:
p = q = True,
(p—>qA-T)As +— p=>r="False,
s = True

Demo: Simplification through Rewriting

Elsa L Gunter CS576 Topics in Automated Deduction

Elsa L Gunter CS576 Topics in Automated Deduction



