

CS576 Topics in Automated Deduction

Elsa L Gunter
2112 SC, UIUC
egunter@illinois.edu

<http://courses.engr.illinois.edu/cs576>

Slides based in part on slides by Tobias Nipkow

February 5, 2015

Elsa L Gunter

CS576 Topics in Automated Deduction

Function Definition in Isabelle/HOL

- Non-recursive definitions with `definition`
No problem
- Primitive-recursive (over datatypes) with `primrec`
Termination proved automatically internally. Definition syntactically restricted to only allow recursive subcalls on immediate recursive subcomponents.
- Well-founded recursion with `fun`
Proved automatically, but user must take care that recursive calls are on “obviously” smaller arguments

Elsa L Gunter

CS576 Topics in Automated Deduction

/ 26

Function Definition in Isabelle/HOL

- Well-founded recursion with `function`
User must (help to) prove termination
(\rightsquigarrow later)
- Role your own, via definition of the functions graph
use of choose operator, and other tedious approaches, but can work when built-in methods don't.

Elsa L Gunter

CS576 Topics in Automated Deduction

primrec Example

```
datatype 'a list = Nil | Cons 'a "'a list"

primrec app :: "'a list ⇒ 'a list ⇒ 'a list
where
  "app Nil           ys = ys" |
  "app (Cons x xs) ys = Cons x (app xs ys)"
```

Elsa L Gunter

CS576 Topics in Automated Deduction

/ 26

datatype: The General Case

```
datatype (α1, ..., αm)τ = C1 τ1,1 ... τ1,n1 |
  ... |
  Ck τk,1 ... τk,nk
```

- Term Constructors: $C_i : \tau_{i,1} \Rightarrow \dots \Rightarrow \tau_{i,n_i} \Rightarrow (\alpha_1, \dots, \alpha_m)\tau$
- Distinctness: $C_i x_1 \dots x_{i,n_i} \neq C_j y_1 \dots y_{j,n_j}$ if $i \neq j$
- Injectivity: $(C_i x_1 \dots x_{i,n_i} = C_i y_1 \dots y_{i,n_i}) \Rightarrow (x_1 = y_1 \wedge \dots \wedge x_{i,n_i} = y_{i,n_i})$

Distinctness and Injectivity are applied by `simp`
Induction must be applied explicitly

Elsa L Gunter

CS576 Topics in Automated Deduction

primrec: The General Case

If τ is a datatype with constructors C_1, \dots, C_k , then $f : \dots \Rightarrow \tau \Rightarrow \tau'$ can be defined by primitive recursion by:

```
f x1 ... (C1 y1,1 ... y1,n1) ... xm = r1 |
  ...
  f x1 ... (Ck yk,1 ... yk,nk) ... xm = rk
```

The recursive calls in r_i must be structurally smaller, i.e. of the form $f a_1 \dots y_{i,j} \dots a_m$ where $y_{i,j}$ is a recursive subcomponent of $(C_i y_{i,1} \dots y_{i,n_i})$.

Elsa L Gunter

CS576 Topics in Automated Deduction

/ 26

nat is a datatype

```
datatype nat = 0 | Suc nat
```

Functions on `nat` are definable by `primrec`!

```
primrec f::nat⇒... where
  f 0 = ...
  f (Suc n) = ...f n ...
```

Elsa L. Gunter

CS576 Topics in Automated Deduction

Type option

```
datatype 'a option = None | Some 'a
```

Important application:

$\dots \Rightarrow 'a \text{ option} \approx \text{partial function}$
 $\text{None} \approx \text{no result}$
 $\text{Some } x \approx \text{result of } x$

Elsa L. Gunter

CS576 Topics in Automated Deduction

Elsa L. Gunter

CS576 Topics in Automated Deduction

option Example

```
primrec lookup :: 'k ⇒ ('k × 'v)list ⇒ 'v option
where
  lookup k [] = None |
  lookup k (x#xs) =
    (if fst x = k then Some(snd x) else lookup k xs)
```

Elsa L. Gunter

CS576 Topics in Automated Deduction

Term Rewriting

Term rewriting means ...

Terminology: equation becomes *rewrite rule*

Using a set of equations $I = r$ from left to right

As long as possible (possibly forever!)

Elsa L. Gunter

CS576 Topics in Automated Deduction

Elsa L. Gunter

CS576 Topics in Automated Deduction

Example

$$\begin{array}{ll} 0 + n = n & (1) \\ (\text{Suc } m) + n = \text{Suc}(m + n) & (2) \\ (0 \leq m) = \text{True} & (3) \\ (\text{Suc } m \leq \text{Suc } n) = (m \leq n) & (4) \end{array}$$

$$\begin{array}{ll} 0 + \text{Suc } 0 \leq \text{Suc } 0 + x & (1) \\ \text{Suc } 0 \leq \text{Suc } 0 + x & (2) \\ \text{Suc } 0 \leq \text{Suc}(0 + x) & (4) \\ 0 \leq 0 + x & (3) \\ \text{True} & \end{array}$$

Elsa L. Gunter

CS576 Topics in Automated Deduction

Rewriting: More Formally

substitution = mapping of variables to terms

- $I = r$ is *applicable* to term $t[s]$ if there is a substitution σ such that $\sigma(I) = s$
 - s is an instance of I
- Result: $t[\sigma(r)]$
- Also have theorem: $t[s] = t[\sigma(r)]$

Elsa L. Gunter

CS576 Topics in Automated Deduction

Elsa L. Gunter

CS576 Topics in Automated Deduction

Example

- Equation: $0 + n = n$
- Term: $a + (0 + (b + c))$
- Substitution: $\sigma = \{n \mapsto b + c\}$
- Result: $a + (b + c)$
- Theorem: $a + (0 + (b + c)) = a + (b + c)$

Elsa L. Gunter

CS576 Topics in Automated Deduction

Conditional Rewriting

Rewrite rules can be conditional:

$$\llbracket P_1; \dots; P_n \rrbracket \implies I = r$$

is *applicable* to term $t[s]$ with substitution σ if:

- $\sigma(I) = s$ and
- $\sigma(P_1), \dots, \sigma(P_n)$ are provable (possibly again by rewriting)

Elsa L. Gunter

CS576 Topics in Automated Deduction

Elsa L. Gunter

CS576 Topics in Automated Deduction

Variables

Three kinds of variables in Isabelle:

- bound: $\forall x. x = x$
- free: $x = x$
- schematic: $?x = ?x$
("unknown", a.k.a. *meta-variables*)

Can be mixed in term or formula: $\forall b. \exists y. f ?a y = b$

Elsa L. Gunter

CS576 Topics in Automated Deduction

Variables

- Logically: free = bound at meta-level
- Operationally:
 - free variables are fixed
 - schematic variables are instantiated by substitutions

Elsa L. Gunter

CS576 Topics in Automated Deduction

Elsa L. Gunter

CS576 Topics in Automated Deduction

From x to ?x

State lemmas with free variables:

```
lemma app_Nil2 [simp]: "xs @ [] = xs"
:
done
```

After the proof: Isabelle changes xs to $?xs$ (internally):

$$?xs @ [] = ?xs$$

Now usable with arbitrary values for $?xs$

Example: rewriting

$$\text{rev}(a @ []) = \text{rev } a$$

using `app_Nil2` with $\sigma = \{?xs \mapsto a\}$

Elsa L. Gunter

CS576 Topics in Automated Deduction

Basic Simplification

Goal: 1. $\llbracket P_1; \dots; P_m \rrbracket \implies C$

`proof (simp add: eq_thm1 ... eq_thm_n)`

Simplify (mostly rewrite) $P_1; \dots; P_m$ and C using

- lemmas with attribute `simp`
- rules from `primrec` and `datatype`
- additional lemmas `eq_thm1` ... `eq_thm_n`
- assumptions $P_1; \dots; P_m$

Variations:

- `(simp ... del: ...)` removes `simp`-lemmas
- `add` and `del` are optional

Elsa L. Gunter

CS576 Topics in Automated Deduction

Elsa L. Gunter

CS576 Topics in Automated Deduction

Elsa L. Gunter

CS576 Topics in Automated Deduction

/ 26

/ 26

auto versus simp

- `auto` acts on all subgoals
- `simp` acts only on subgoal 1
- `auto` applies `simp` and more
 - `simp` concentrates on rewriting
 - `auto` combines rewriting with resolution

Elsa L. Gunter

CS576 Topics in Automated Deduction

Termination

Simplification may not terminate.

Isabelle uses `simp`-rules (almost) blindly left to right.

Example: $f(x) = g(x)$, $g(x) = f(x)$ will not terminate.

$$\|P_1, \dots, P_n\| \implies l = r$$

is only suitable as a `simp`-rule only if l is “bigger” than r and each P_i .

$$\begin{array}{ll} (n < m) = (\text{Suc } n < \text{Suc } m) & \text{NO} \\ (n < m) \implies (\text{Suc } n < \text{Suc } m) = \text{True} & \text{YES} \\ \text{Suc } n < m \implies (\text{Suc } n < m) = \text{True} & \text{NO} \end{array}$$

Elsa L. Gunter

/ 26

CS576 Topics in Automated Deduction

/ 26

Assumptions and Simplification

Simplification of $\|A_1, \dots, A_n\| \implies B$:

- Simplify A_1 to A'_1
- Simplify $\|A_2, \dots, A_n\| \implies B$ using A'_1

Elsa L. Gunter

CS576 Topics in Automated Deduction

Ignoring Assumptions

Sometimes need to ignore assumptions; can introduce non-termination.

How to exclude assumptions from `simp`:

`proof (simp (no_asm_simp) ...)`

Simplify only the conclusion, but use assumptions

`proof (simp (no_asm_use) ...)`

Simplify all, but do not use assumptions

`proof (simp (no_asm) ...)`

Ignore assumptions completely

Elsa L. Gunter

/ 26

CS576 Topics in Automated Deduction

/ 26

Rewriting with Definitions (definition)

Definitions do not have the `simp` attribute.

They must be used explicitly:

`proof (simp add: f_def ...)`

Elsa L. Gunter

CS576 Topics in Automated Deduction

Ordered Rewriting

Problem: $?x + ?y = ?y + ?x$ does not terminate

Solution: Permutative `simp`-rules are used only if the term becomes lexicographically smaller.

Example: $b + a \rightsquigarrow a + b$ but not $a + b \rightsquigarrow b + a$.

For types `nat`, `int`, etc., commutative, associative and distributive laws built in.

Example: `proof simp` yields:

$$\begin{aligned} ((B + A) + ((2 :: nat) * C)) + (A + B) \rightsquigarrow \\ \dots \rightsquigarrow 2 * A + (2 * B + 2 * C) \end{aligned}$$

Elsa L. Gunter

CS576 Topics in Automated Deduction

/ 26

Preprocessing

`simp`-rules are preprocessed (recursively) for maximal simplification power:

$$\begin{aligned}\neg A &\mapsto A = \text{False} \\ A \rightarrow B &\mapsto A \Rightarrow B \\ A \wedge B &\mapsto A, B \\ \forall x. A(x) &\mapsto A(?x) \\ A &\mapsto A = \text{True}\end{aligned}$$

Example:

$$(p \rightarrow q \wedge \neg r) \wedge s \mapsto \begin{aligned}p \Rightarrow q &= \text{True}, \\ p \Rightarrow r &= \text{False}, \\ s &= \text{True}\end{aligned}$$

Demo: Simplification through Rewriting