CS576 Topics in Automated Deduction

Elsa L Gunter
2112 SC, UIUC
egunter@illinois.edu
http://courses.grainger.illinois.edu/cs576

Slides based in part on slides by Tobias Nipkow

January 29, 2026

Elsa L Gunter CS576 Topics in Automated Deduction

Theory = Module

Syntax:

theory MyTh
imports ImpThy ...
begin

ImpTh,

declarations, definitions, theorems, proofs, ...

end

@ MyTh: name of theory being built. Must live in file MyTh.thy.

@ ImpTh;: name of imported theories. Importing is transitive.

Elsa L Gunter

CS576 Topics in Automated Deduction

Isabelle Syntax Meta-logic: Basic Constructs

@ Distinct from HOL syntax
@ Contains HOL syntax within it

@ Mirrors HOL syntax - need to not confuse them

Elsa L Gunter CS576 Topics in Automated Deduction i / 30

Implication: — (==>)

For separating premises and conclusion of theorems / rules
Equality: = (==)

For definitions
Universal Quantifier: A (!!)

Usually inserted and removed by Isabelle automatically

Do not use inside HOL formulae

Isabelle | HOL Meaning
= — Implies
= = Equality
A A4 Universal Quantification, For All

Three kinds of variables in Isabelle:
@ bound: Vx. x =x Ax.x>3=x>0
o free: x = x (only in HOL terms)
@ schematic: 7x =7x
(“unknown”, a.k.a. meta-variables)

Can be mixed in term or formula: Vb. Jy. f 7ay = b

Elsa L Gunter

CS576 Topics in Automated Deduction

o Logically: free = bound at meta-meta-level
@ Operationally:
o free variabes are fixed
e schematic variables are instantiated by substitutions

Elsa L Gunter CS576 Topics in Automated Deduction / 30

State lemmas with free variables:
lemma app Nil2 [simp]: "xs @ [] = xs"

done

After the proof: Isabelle changes xs to ?xs (internally):

?xs @ [] = 7xs
Now usable with arbitrary values for ?xs
Example: rewriting
rev(a @ []) = rev a

using app_Nil2 with 0 = {?xs > a}

Elsa L Gunter

[A1;...;A 0l =B

abbreviates
Al—...— A, — B

and means the rule (or potential rule):

Al 5A,

B

s o~ “and”

Note: A theorem is a rule; a rule is a theorem.

Elsa L Gunter

CS576 Topics in Automated Deduction JE

The Proof/Goal State

LA ... Xm. [A1; ... ;A] = B
X1 Xm Local constants (fixed variables)
Ar... A, Local assumptions
B Actual (sub)goal

Proof - Method 2

General schema:

lemma /lemma_name: " ..."

proof (method)

fixxyz

assume hypl_name: " ..."

from hypl_name

show : " ..."
proof method
qed

qed

Will try to use only Method 2 (lsar) in lectures in class

Elsa L Gunter

CS576 Topics in Automated Deduction

CS576 Topics in Automated Deduction i /

Proofs - Method 1

General schema:

lemma name: " ..."

apply (method)

done

If the lemma is suitable as a simplification rule:
lemma name([simp]: " ..."

Adds lemma name to future simplifications

Elsa L Gunter CS576 Topics in Automated Deduction i / 30

Proof Methods

e Simplification and a bit of logic

auto Effect: tries to solve as many subgoals as possible using simplification
and basic logical reasoning

simp Effect: relatively intelligent rewriting with database of theorem, extra
given theorems, and assumptions.

@ More specialized tactics to come

Elsa L Gunter CS576 Topics in Automated Deduction / 30

Top-down Proofs

sorry
“completes” any proof (by giving up, and accepting it)
Suitable for top-down development of theories:

Assume lemmas first, prove them later.

Only allowed for interactive proof!

Elsa L Gunter CS576 Topics in Automated Deduction

Defining Things

Introducing New Types

Keywords:

@ typedecl: Pure declaration; New type with no properties (except
that it is non-empty)

o typedef: Primitive for type definitions; Only real way of introducing
a new type with new properties
Must build a model and prove it nonempty
More on this later

@ type_synonym: Abbreviation - used only to make theory files more
readable

@ datatype: Defines recursive data-types; solutions to free algebra
specifications
Basis for primitive recursive function definitions

@ record: introduces a record type scheme, introducing its fields. To
be covered later.

Elsa L Gunter CS576 Topics in Automated Deduction i / 30

Elsa L Gunter CS576 Topics in Automated Deduction

typedecl

typedecl name

Introduces new “opaque” name without definition

Serves similar role for generic reasoning as polymorphism, but can't be
specialized

Example:

typedecl addr — An abstract type of addresses

Elsa L Gunter CS576 Topics in Automated Deduction i / 30

type_synonym datatype: An Example

type_synonym (tyvars) name = T
Introduces an abbreviation (tyvars) name for type 7

Examples:

type_synonym name = string

type_synonym (’a,’b)foo = "’a list * ’b"

Type abbreviations are expanded immediately after parsing

Not present in internal representation and Isabelle output

Elsa L Gunter CS576 Topics in Automated Deduction

datatype ’a list = Nil | Cons ’a "’a list"

Properties:
o Type constructors: list of one argument
@ Term constructors: Nil ’a list
Cons :: ’a = ’a list = ’a list
o Distinctness: Nil # Cons x xs
o Injectivity:
(Cons x xs = Cons y ys) = (x =y A xs = ys)

Elsa L Gunter CS576 Topics in Automated Deduction / 30

Structural Induction on Lists datatype: The General Case

P xs holds for all lists xs if datatype (o1,...,am)7 = G Ti1...7T1n
e P Nil, and [...
o for arbitrary a and list, P list implies | Gl Tt Thon
P (Cons a list) @ Term Constructors:
P ys G::7i1=...=Tin=>(01,...,am)T
. o Distinctness: G x;i...xin # G yj.. Yjn ifi#j
P Nil P (Cons y ys) o Injectivity: (Cj x1...xp, = Ci y1...¥n) =
P xs (X1:Y1/\-~~/\Xn,-=}’n,-)
In Isabelle:
Distinctness and Injectivity are applied by simp
[?P[]; Nalist. ?P list =>?P(a+ list) | = ?P ?list Induction must be applied explicitly

Elsa L Gunter CS576 Topics in Automated Deduction /3 Elsa L Gunter CS576 Topics in Automated Deduction

o Structural Induction Every datatype introduces a case construct, e.g.

(case xs of [] =...| y#ys = ...y ...ys ...)
o Syntax: (induct x) Y#Y y y

x must be a free variable in the first subgoal In general:

The type of x must be a datatype
P P case Arbitrarily nested pattern = Expression using pattern variables

o Effect: Generates 1 new subgoal per constructor | Another pattern = Another expression

o Type of x determines which induction principle to use
Patterns may be non-exhaustive, or overlapping
Order of clauses matters - early clause takes precedence.

Elsa L Gunter €S576 Topics in Automated Deduction i / 30 Elsa L Gunter CS576 Topics in Automated Deduction i / 30

Case Distinctions

apply / proof (case_tac t)

creates k subgoals:
t=GC; X1 oo Xp; = ...
Demo: Another Datatype Example

one for each constructor C;

Elsa L Gunter CS576 Topics in Automated Deduction . / Elsa L Gunter CS576 Topics in Automated Deduction / 30

Definition: definition prime :: "nat = bool" where

"prime p = 1<p A (mdvd p — m =1V m=p)"
definition lot_size::"nat * nat" where
"lot_size = (62, 103)" Not a definition: m free, but not on left

definition sq::"nat = nat" where ! Every free variable on rhs must occur as argument on lhs !
sq.def: "sgn =n *x n" .
"prime p = 1<p A (Y m. mdvdp — m =1V m=p)"

The ASCII for = is ==.

Definitions of form f xj ...x, = t where t only uses xj ...x, and
previously defined constants.

Creates theorem with default name f_def

Note: no recursive definitions with definition

Elsa L Gunter CS576 Topics in Automated Deduction /3 Elsa L Gunter CS576 Topics in Automated Deduction

Using Definitions HOL Functions are Total

Why nontermination can be harmful:
Definitions are not used automatically
If £ x is undefined, is f x = f x?

Unfolding of definition of sq: Excluded Middle says it must be True or False

proof (unfold sq.def) Reflexivity says it's True
Rewriting definition of sq out of current goal: How about f x = 07 fx=17 fx=y?
proof (simp add: sq-def) If fx#y then Vy. fx#y. Then fx # fx #

! All functions in HOL must be total !

Function Definition in Isabelle/HOL Function Definition in Isabelle/HOL
@ Non-recursive definitions with definition o Well-founded recursion with function
No problem User must (help to) prove termination
@ Primitive-recursive (over datatypes) with primrec (~ later)
Termination proved automatically internally @ Role your own, via definition of the functions graph
o Well-founded recursion with fun use of choose operator, and other tedious approaches, but can work
Proved automatically, but user must take care that recursive calls are when built-in methods don't.

on “obviously” smaller arguments

Elsa L Gunter CS576 Topics in Automated Deduction . / Elsa L Gunter CS576 Topics in Automated Deduction / 30

