nat as a Recursive datatype

datatype nat = 0
CS576 Topics in Automated Deduction | Suc nat

Elsa L Gunter
2112 SC, UIUC
egunter@illinois.edu
http://courses.grainger.illinois.edu/cs576

Slides based in part on slides by Tobias Nipkow

January 27, 2026

Elsa L Gunter CS576 Topics in Automated Deduction

Elsa L Gunter CS576 Topics in Automated Deduction

nat as a Recursive datatype A Recursive datatype

datatype ’a list = Nil ("[]1")

7P 0 = (Anat.?P nat = 7P (Suc nat)) = 7P 7nat | Cons ’a "’a list" (infixr "#’’ 65)

[1: empty list
To show for nat that P nat holds
x # xs: list with head x::'a, tail xs::'a list
@ P 0 holds

@ Pick a new (fresh) variable n, and A toy list: False # (True # [])

@ Assuming P n holds, show P (Suc n) holds Syntactic sugar: [False, True]

Elsa L Gunter €S576 Topics in Automated Deduction i / 18 Elsa L Gunter CS576 Topics in Automated Deduction i /18

Concrete Syntax Structural Induction on Lists

When writing terms and types in .thy files P xs holds for all lists xs if

. eP []
Types and terms need to be enclosed in "..." . o
@ and for arbitrary y and ys, P ys impliesP (y # ys)

Except for single identifiers, e.g. ’a P ys

." won't always be shown on slides P[] P (y # ys)

P xs

Elsa L Gunter CS576 Topics in Automated Deduction

Elsa L Gunter CS576 Topics in Automated Deduction

A Recursive Function: List Append

Definition by primitive recursion:

primrec app "’a list = ’a list = ’a list
where

app [T ys=__

app (x # xs) ys = __ app xs o

One rule per constructor
Recursive calls only applied to constructor arguments
Guarantees termination (total function)

Elsa L Gunter CS576 Topics in Automated Deduction

Demo: Append and Reverse

Elsa L Gunter

Proofs - Method 1

General schema:

lemma name: " ..."

apply (method)

done

If the lemma is suitable as a simplification rule:
lemma name([simp]: " ..."

Adds lemma name to future simplifications

Elsa L Gunter CS576 Topics in Automated Deduction i /18

Top-down Proofs

sorry

o “completes” any proof (by giving up, and accepting it)
@ Suitable for top-down development of theories:

@ Assume lemmas first, prove them later.

Only allowed for interactive proof!

Elsa L Gunter CS576 Topics in Automated Deduction

CS576 Topics in Automated Deduction

Proof - Method 2

General schema:

lemma lemma_name: " ..."
proof (method)
fixxyz
assume hypl_name: " ..."
from hypl_name
show : " ..."

proof method

qed
qed

Will try to use only Method 2 (lsar) in lectures in class

Elsa L Gunter CS576 Topics in Automated Deduction i / 18

Isabelle Syntax

o Distinct from HOL syntax
o Contains HOL syntax within it

@ Also the same as HOL - need to not confuse them

Elsa L Gunter

CS576 Topics in Automated Deduction

Theory = Module Meta-logic: Basic Constructs

Syntax:

theory MyTh
imports ImpThy ... ImpTh,
begin

declarations, definitions, theorems, proofs, ...

end

@ MyTh: name of theory being built. Must live in file MyTh.thy.
@ ImpTh;: name of imported theories. Importing is transitive.

Elsa L Gunter CS576 Topics in Automated Deduction

Implication: = (==)

For separating premises and conclusion of theorems / rules
Equality: = (==)

For definitions
Universal Quantifier: A (!!)

Usually inserted and removed by Isabelle automatically

Do not use inside HOL formulae

Elsa L Gunter

CS576 Topics in Automated Deduction

Rule/Goal Notation The Proof/Goal State

[1A;...; Al =B

abbreviates
Al=—...— A, — B

and means the rule (or potential rule):

Ar; .. 5 A,
B

m

; &~ “and”

Note: A theorem is a rule; a rule is a theorem.

Elsa L Gunter CS576 Topics in Automated Deduction i /18

LA ... xm. [1AL; .. 5 A1l =B
X1+ Xm Local constants (fixed variables)
AL, A, Local assumptions
B Actual (sub)goal

Proof Methods Top-down Proofs

o Simplification and a bit of logic

auto Effect: tries to solve as many subgoals as possible using simplification
and basic logical reasoning

simp Effect: relatively intelligent rewriting with database of theorem, extra
given theorems, and assumptions.

@ More specialized tactics to come

Elsa L Gunter CS576 Topics in Automated Deduction

sorry
“completes” any proof (by giving up, and accepting it)
Suitable for top-down development of theories:

Assume lemmas first, prove them later.

Only allowed for interactive proof!

Elsa L Gunter

CS576 Topics in Automated Deduction

