
Proving Properties of Even Numbers

Induction leads to two cases:

rule: 0 ∈ Ev

1. 0 + 0 ∈ Ev case m = 0

rule: n ∈ Ev =⇒ n + 2 ∈ Ev

z 2. Λn.[|n ∈ Ev; n + n ∈ Ev|] =⇒ Suc(Sucn) + Suc(Sucn) ∈ Ev

case m = n + 2

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 27, 2015 1

/ 6

Rule Induction for Ev

To prove

n ∈ Ev =⇒ P n

by rule induction on n ∈ Ev we must prove

P 0

P n =⇒ P(n + 2)

Uses rule Ev.induct:

[|n ∈ Ev; P 0; Λn. P n =⇒ P(n + 2)|] =⇒ P n

An elimination rule

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 27, 2015 2

/ 6

Rule Induction in General

Set S is defined inductively. To prove

x ∈ S =⇒ P x

by rule induction on x ∈ S we must prove for every rule

[|a1 ∈ S; . . . ; an ∈ S|] =⇒ a ∈ S

that P is preserved:
[|P a1; . . . ; P an|] =⇒ P a

In Isabelle/HOL:

proof(rule S.induct)
or

apply(erule S.induct)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 27, 2015 3

/ 6

Demo: Inductive Set Definition

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 27, 2015 4

/ 6

Demo: Evens are infinite

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 27, 2015 5

/ 6

Format for Inductive Relations Definitions

inductive R :: “τ −→ bool” where

[|R(a1,1); . . . ; R(a1,n); A1,1; . . . ; A1,k|] =⇒ R(a1) |

. . . |

[|R(am,1); . . . ; R(am,l); Am,1; . . . ; Am,j|] =⇒ R(am)

where Ai,j are side conditions not involving R.

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 27, 2015 6

/ 6

Format for Inductive Relations Definitions

inductive R :: “τ −→ bool′′ where
[|R(a1,1); . . . ; R(a1,n); A1,1; . . . ; A1,k|] =⇒ R(a1) |

. . . |

[|R(am,1); . . . ; R(am,l); Am,1; . . . ; Am,j|] =⇒ R(am)

where Ai ,j are side conditions not involving R.

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 27, 2015 7

/ 6

Format for Mutual Inductive Relations Definitions

inductive

R1 :: “τ1 −→ bool” and

. . .
Rn :: “τn −→ bool” where

[|Ri(a1,1); . . . ; Rj(a1,n); A1,1; . . . ; A1,k|] =⇒ Rk(a1) |

. . . |

[|Rm(am,1); . . . ; Rn(am,l); Am,1; . . . ; Am,j|] =⇒ Rp(am)

where Ai,j are side conditions not involving any Rk.

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 27, 2015 8

/ 6

Example with Mutual Recursion

inductive

Even :: "nat ⇒ bool" and

Odd :: "nat ⇒ bool" where

ZeroEven [intro!]: "Even 0" |

OddOne [intro!]: "Odd (Suc 0)" |

OddSucEven [intro]: "Odd n =⇒ Even (Suc n)" |

EvenSucOdd [intro]: "Even n =⇒ Odd (Suc n)"

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 27, 2015 9

/ 6

General Recursive Functions: fun

Example:

fun fib :: ”nat ⇒ nat”where
”fib 0 = 0”|
”fib 1 = 1”|
”fib (Suc(Suc x)) = (fib x + fib (Suc x))”

Not primitive recursive because of fib(Suc(Suc x)) on left, and because
of fib(Suc x) on right.

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 27, 2015 10

/ 6

fun: Rules of Use

Compared to primrec, very few restrictions:

Can be used to define functions over any type

Clauses in fun must be equations

Left-hand side is function being defined applied to terms built from
data constructors, distinct variables and wildcards

Right-hand side is a expression made from the function being defined,
the variables in the argument on the left, and previously defined terms

If clauses overlap, first takes precedence.

Calculates a measure from lexicographic ordering of some collection
of arguments

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 27, 2015 11

/ 6

Example: sep

Define a function for putting a separator between all adjacent elements in
a list:

fun sep :: "’a * ’a list => ’a list" where

"sep(a, []) = []" |

"sep(a, [x]) = [x]" |

"sep(a, x#y#zs) = x # a # sep(a,y#zs)"

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 27, 2015 12

/ 6

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 27, 2015 13

/ 6

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow February 27, 2015 14

/ 6

