

CS576 Topics in Automated Deduction

Elsa L Gunter
2112 SC, UIUC
egunter@illinois.edu

<http://courses.engr.illinois.edu/cs576>

Slides based in part on slides by Tobias Nipkow

January 22, 2026

λ -calculus in a nutshell

Informal notation: $t[x]$

term t with 0 or more free occurrences of x

- **Function application:**

$f a$ is the function f called with argument a .

- **Function abstraction:**

$\lambda x.t[x]$ is the function with formal parameter x and body/result $t[x]$,
i.e. $x \mapsto t[x]$.

- **Computation:**

Replace formal parameter by actual value

(“ β -reduction”): $(\lambda x. t[x])a \rightsquigarrow_{\beta} t[a]$

Example: $(\lambda x. x + 5) 3 \rightsquigarrow_{\beta} (3 + 5)$

Isabelle performs β -reduction automatically

Isabelle considers $(\lambda x. t[x])a$ and $t[a]$ equivalent

Terms and Types

Terms must be well-typed!

The argument of every function call must be of the right type

Notation: $t :: \tau$ means t is well-typed term of type τ

Type Inference

- Isabelle automatically computes (“infers”) the type of each variable in a term.
- In the presence of *overloaded* functions (functions with multiple, unrelated types) not always possible.
- User can help with **type annotations** inside the term.
- **Example:** $f(x:\text{nat})$

Currying

- **Curried:** $f :: \tau_1 \Rightarrow \tau_2 \Rightarrow \tau$
- **Tupled:** $f :: \tau_1 \times \tau_2 \Rightarrow \tau$

Advantage: partial application $f a_1$ with $a_1 :: \tau$

Moral: Thou shalt curry your functions (most of the time :-)).

Terms: Syntactic Sugar

Some predefined syntactic sugar:

- Infix: `+`, `-`, `#`, `@`, ...
- Mixfix: `if_then_else_`, `case_of_`, ...
- Binders: `∀x.P x` means $(\forall)(\lambda x. P x)$

Prefix binds more strongly than infix:

$$! \quad f \ x + y \equiv (f \ x) + y \not\equiv f \ (x + y) \quad !$$

Type bool

Formulae = terms of type bool

True::bool

False::bool

$\neg :: \text{bool} \Rightarrow \text{bool}$

$\wedge, \vee, \dots :: \text{bool} \Rightarrow \text{bool}$

⋮

if-and-only-if: = but binds more tightly

Type nat

0::nat

Suc :: nat \Rightarrow nat

+, \times , ... :: nat \Rightarrow nat \Rightarrow nat

⋮

Overloading

! Numbers and arithmetic operations are overloaded:

0, 1, 2, ... :: nat or real (or others)

$+$:: *nat* \Rightarrow *nat* \Rightarrow *nat* and

$+$:: *real* \Rightarrow *real* \Rightarrow *real* (and others)

You need type annotations: $1 :: \text{nat}$, $x + (y :: \text{nat})$

... unless the context is unambiguous: `Suc 0`

Type list

- `[]`: empty list
- `x # xs`: list with first element `x` ("head") and rest `xs` ("tail")
- Syntactic sugar: `[x1, ..., xn]` \equiv `x1#...#xn#[]`

List is supported by a large library:

`hd`, `tl`, `map`, `size`, `filter`, `set`, `nth`, `take`, `drop`, `distinct`, ...

Don't reinvent, reuse!
↗ HOL/List.thy

A Recursive datatype

```
datatype 'a list = Nil    ("[]")  
              | Cons 'a "'a list"  (infixr "#" 65)
```

`[]`: empty list

`x # xs`: list with head `x`::`'a`, tail `xs`::`'a list`

A toy list: `False # (True # [])`

Syntactic sugar: `[False, True]`

Concrete Syntax

When writing terms and types in `.thy` files

Types and terms need to be enclosed in `"..."`

Except for single identifiers, e.g. `'a`

`"..."` won't always be shown on slides

Structural Induction on Lists

$P \text{ xs}$ holds for all lists xs if

- $P \text{ []}$
- and for arbitrary y and ys , $P \text{ ys}$ implies $P \text{ (y \# ys)}$

$$\frac{\begin{array}{c} P \text{ ys} \\ \vdots \\ P \text{ (y \# ys)} \end{array}}{P \text{ xs}}$$

A Recursive Function: List Append

Definition by *primitive recursion*:

```
primrec app :: "'a list ⇒ 'a list ⇒ 'a list
```

where

```
app [] ys = _____
```

```
app (x # xs) ys = _____ app xs ... _____
```

One rule per constructor

Recursive calls only applied to constructor arguments

Guarantees termination (total function)

Demo: Append and Reverse

Proofs - Method 1

General schema:

```
lemma name: "..."
```

```
apply ( ... )
```

```
⋮
```

```
done
```

If the lemma is suitable as a simplification rule:

```
lemma name[simp]: "..."
```

Adds lemma *name* to future simplifications

Proof - Method 2

General schema:

```
lemma lemma_name: "..."  
proof method  
fix x y z  
assume hyp1_name: "..."  
from hyp1_name  
show : "..."  
proof method  
:  
qed  
qed
```

Will try to use only Method 2 (Isar) in lectures in class