CS576 Topics in Automated Deduction

Elsa L Gunter
2112 SC, UIUC
egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

Slides based in part on slides by Tobias Nipkow

January 22, 2026

Elsa L Gunter CS576 Topics in Automated Deduction

A-calculus in a nutshell

Informal notation: t[x]
term t with 0 or more free occurrences of x

o Function application:
f ais the function f called with argument a.
o Function abstraction:

Ax.t[x] is the function with formal parameter x and body/result t[x],
i.e. x — t[x].

Elsa L Gunter

A-calculus in a nutshell

@ Computation:
Replace formal parameter by actual value
(“B-reduction”):

Example: (Ax. x +5) 3~35 (3+5)

(Ax.t[x])a~p t]a]

Isabelle performs [-reduction automatically

Isabelle considers (Ax.t[x])a and t[a] equivalent

Elsa L Gunter CS576 Topics in Automated Deduction i /18

Type Inference

o lIsabelle automatically computes (“infers”) the type of each variable in
a term.

@ In the presence of overloaded functions (functions with multiple,
unrelated types) not always possible.

@ User can help with type annotations inside the term.

o Example: f(x::nat)

Elsa L Gunter CS576 Topics in Automated Deduction

CS576 Topics in Automated Deduction

Terms and Types

Terms must be well-typed!

The argument of every function call must be of the right type

Notation: t :: 7 means t is well-typed term of type 7

Elsa L Gunter CS576 Topics in Automated Deduction i / 18

o Curried: fumi=>mn=r1

o Tupled: f:m xXm=71

Advantage: partial application f a; with a; :: 7
Moral: Thou shalt curry your functions (most of the time :-)).

Elsa L Gunter

CS576 Topics in Automated Deduction

Terms: Syntactic Sugar Type bool

Some predefined syntactic sugar:

o Infix: +, —, #, O, ...
o Mixfix: if_then_else_, case_of _, ...
o Binders: Vx.P x means (V)(Ax. P x)

Prefix binds more strongly than infix:

P fx+y=(EFfx)+y#£f(x+y) !

Elsa L Gunter CS576 Topics in Automated Deduction

Formulae = terms of type bool

True::bool
False::bool
= :: bool = bool

A, V, ... bool = bool

if-and-only-if: = but binds more tightly

Elsa L Gunter

CS576 Topics in Automated Deduction

0::nat
Suc :: nat = nat
+, X, ... nat = nat = nat

o []: empty list
o x # xs: list with first element x (“head”)
and rest xs (“tail”)

o Syntactic sugar: [x1,...,Xn] = X1# ... #xo#[]

List is supported be a large library:
hd, tl, map, size, filter, set, nth, take, drop, distinct, ...

Don't reinvent, reuse!
~» HOL/List.thy

Elsa L Gunter CS576 Topics in Automated Deduction

I Numbers and arithmetic operations are overloaded:

0,1, 2, ...:: nat or real (or others)

+ i nat = nat = nat and

+ :: real = real = real (and others)

You need type annotations: 1 :: nat, x + (y :: nat)

... unless the context is unambiguous: Suc 0

Elsa L Gunter CS576 Topics in Automated Deduction i / 18

A Recursive datatype

datatype ’a list = Nil ("[1")
| Cons ’a "’a list" (infixr "#’’ 65)

[1: empty list

x # xs: list with head x::'a, tail xs::'a list

A toy list: False # (True # [])

Syntactic sugar: [False, True]

Elsa L Gunter

CS576 Topics in Automated Deduction

Concrete Syntax Structural Induction on Lists

When writing terms and types in .thy files
Types and terms need to be enclosed in "..."

Except for single identifiers, e.g. ’a

." won't always be shown on slides

Elsa L Gunter CS576 Topics in Automated Deduction

A Recursive Function: List Append

Definition by primitive recursion:

primrec app "’a list = ’a list = ’a list
where

app [1 ys = __

app (x # xs) ys = ____app xs

One rule per constructor
Recursive calls only applied to constructor arguments
Guarantees termination (total function)

Elsa L Gunter CS576 Topics in Automated Deduction i /18

Proofs - Method 1

General schema:

lemma name: " ..."
apply C ...)

done
If the lemma is suitable as a simplification rule:
lemma name[simp]: " ..."

Adds lemma name to future simplifications

Elsa L Gunter CS576 Topics in Automated Deduction

P xs holds for all lists xs if
eP []
o and for arbitrary y and ys, P ys implies P (y # ys)
P ys

P (y # ys)
P xs

Elsa L Gunter

CS576 Topics in Automated Deduction

Demo: Append and Reverse

Proof - Method 2

General schema:

lemma lemma_name: " ..."
proof method
fixxyz
assume hypl_name: " ..."
from hypl_name
show : " ..."

proof method

qed
qed

Will try to use only Method 2 (lsar) in lectures in class

Elsa L Gunter

CS576 Topics in Automated Deduction

