CS576 Topics in Automated Deduction

Elsa L Gunter
2112 SC, UIUC
egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

Slides based in part on slides by Tobias Nipkow

January 20, 2026

Elsa L Gunter CS576 Topics in Automated Deduction : /33

mailto:egunter@illinois.edu
http://courses.engr.illinois.edu/cs576

Contact Information

Office: 2112 SC
Office Hours:

o Fridays 11:00am - 12:15pm
e Also by appointment
o May add more if desirable

Email: egunter@illinois.edu
Newsgroup: https://campuswire.com/c/GASDCEDE7/feed
@ No TA this semester

Elsa L Gunter CS576 Topics in Automated Deduction : /33

mailto:egunter@illinois.edu
https://campuswire.com/c/GA8DC6DE7/feed

Course Structure

@ Recommended Texts:

e Programming and Proving in Isabelle/HOL
by Tobias Nipkow
o Isabelle/HOL: A Proof Assistant for Higher-Order Logic
by Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel
e Concrete Semantics with Isabelle/HOL
Tobias Nipkow and Gerwin Klein,
http://www.concrete-semantics.org

o Credit:
o Homework (submitted via PrairieLearn) 33%
e Project and presentation 67%

@ No Final Exam

Elsa L Gunter CS576 Topics in Automated Deduction /33

http://www.concrete-semantics.org

Some Useful Links

o Website for class:
http://courses.engr.illinois.edu/cs576/sp2026/

o Website for Isabelle:
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/

@ Isabelle mailing list — to join, send mail to:
isabelle-users@cl.cam.ac.uk

Elsa L Gunter CS576 Topics in Automated Deduction : /33

http://courses.engr.illinois.edu/cs576/sp2026/
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/
isabelle-users@cl.cam.ac.uk

@ Homework:

o (Mostly) fairly short exercises in Isabelle
e Submitted via svn
@ Project:
o Develop a model of a system in Isabelle
e Prove some substantive properties of model
e Discuss progress weekly in class
o Give 20 minute presentation of work at end of course

Elsa L Gunter CS576 Topics in Automated Deduction

/ 33

Course Objectives

@ To learn to do formal reasoning
@ To learn to model complex problems from computer science

@ To learn to given fully rigorous proofs of properties

Elsa L Gunter CS576 Topics in Automated Deduction : /33

System Architecture

Isabelle/jEdit JEdit based interface

Isar Isabelle proof scripting language
Isabelle/HOL Isabelle instance for HOL
Isabelle generic theorem prover
Standard ML implementation language

Elsa L Gunter CS576 Topics in Automated Deduction /33

jEdit Input

Input of math symbols in jEdit
@ via “standard” ascii name: &, |, -==>, ...
@ via ascii encoding (similar to IATEX):
\<and>, \<or>, ...

@ via menu (“Symbols")

Elsa L Gunter CS576 Topics in Automated Deduction : /33

Symbol Translations

symbol v 3 A - A
ascii (1) || \<forall> | \<exists> | \<lambda> | \<not> | \<and>
ascii (2) ALL EX YA ~ &
symbol \Y — =

ascii (1) || \<or> | \<longrightarrow> | \<Rightarrow>

ascii (2) | -=> =>

See Appendix A of tutorial for more complete list

Elsa L Gunter CS576 Topics in Automated Deduction /33

Time for a demo of types and terms
(and a simple lemma)

Elsa L Gunter CS576 Topics in Automated Deduction /33

Overview of Isabelle/HOL

CS576 Topics in Automated Deduction

HOL

@ HOL = Higher-Order Logic
@ HOL = Types + Lambda Calculus + Logic
@ HOL has
o datatypes
e recursive functions
o logical operators (A, V, —, ¥, 3, ...)
@ HOL is very similar to a functional programming language
@ Higher-order = functions are values, too!

Elsa L Gunter CS576 Topics in Automated Deduction : /33

Formulae (Approximation)

@ Syntax (in decreasing priority):

form = (form) | term = term
| —form | form A form
| formV form | form — form
| Vx. form | 3x. form

and some others

@ Scope of quantifiers: as for to right as possible

Elsa L Gunter CS576 Topics in Automated Deduction : /33

e ~AABVC=((-A)AB)VvC

e AAB=C=AA(B=C)

o Vx. PxNQx=Vx. (PxAQx)

e VxJy. PxyAQx=Vx.(Ty. (PxyAQx))

Elsa L Gunter CS576 Topics in Automated Deduction : /33

Formulae

@ Abbreviations:
Vxy. Pxy=VxVy.Pxy (V,3,A...)

@ Hiding and renaming:
Vxy. (Vx. Pxy)AQxy=Vx y.(Vx1.Px1 y) AQx0y
@ Parentheses:

e A, V, and — associate to the right:
AABAC=AA(BACQC)

o A~—+B—C =A—(B—C0C)
#(A—B)— C !

Elsa L Gunter CS576 Topics in Automated Deduction : /33

Quantifiers have low priority (broad scope) and may need to be
parenthesized:

I Vx. PxAQx# (Vx. Px)AQx !

Elsa L Gunter CS576 Topics in Automated Deduction : /33

Syntax:
T = (1)
| bool | nat | ... base types
| 'a|'b | ... type variables
| 7=71 total functions (ascii : =>)
| 7x7T pairs (ascii : *)
| 7 list lists
|

user-defined types

Parentheses: T1 = T2= T3 =T1= (T2 = T3)

Elsa L Gunter CS576 Topics in Automated Deduction : /33

Terms: Basic syntax

Syntax:
term = (term)
| ¢ | x constant or variable (identifier)
| term term function application
| Ax. term function “abstraction”

lots of syntactic sugar

Examples: f(gx)y h (Ax f (gx))
Parentheses: f a; ag ag = ((f a1) a2) as
Note: Formulae are terms

Elsa L Gunter CS576 Topics in Automated Deduction : /33

A-calculus in a nutshell

Informal notation: t[x]
term t with O or more free occurrences of x

@ Function application:
f ais the function f called with argument a.

e Function abstraction:
Ax.t[x] is the function with formal parameter x and body/result t[x],
ie. x — t[x].

Elsa L Gunter CS576 Topics in Automated Deduction : /33

A-calculus in a nutshell

o Computation:
Replace formal parameter by actual value
(“B-reduction™): (Ax.t[x])a~z t[a]
Example: (Ax. x +5) 3~3 (3+5)
Isabelle performs (-reduction automatically

Isabelle considers (Ax.t[x])a and t[a] equivalent

Elsa L Gunter CS576 Topics in Automated Deduction : /33

Terms and Types

Terms must be well-typed!

The argument of every function call must be of the right type

Notation: t :: 7 means t is well-typed term of type 7

Elsa L Gunter CS576 Topics in Automated Deduction

/ 33

Type Inf

@ Isabelle automatically computes (“infers”) the type of each variable in
a term.

@ In the presence of overloaded functions (functions with multiple,
unrelated types) not always possible.

@ User can help with type annotations inside the term.

e Example: f(x::nat)

Elsa L Gunter CS576 Topics in Automated Deduction : /33

@ Curried: fuim=>mn=r1

@ Tupled: f:T xXm=r1

Advantage: partial application f a; with a; :: 7
Moral: Thou shalt curry your functions (most of the time :-)).

Elsa L Gunter CS576 Topics in Automated Deduction : /33

Terms: Syntactic Sugar

Some predefined syntactic sugar:

o Infix: 4+, —, #, @, ...
o Mixfix: if _then_else_, case_of_, ...
@ Binders: Vx.P x means (V)(Ax. P x)

Prefix binds more strongly than infix:

P fx+y=(E(Ex)+y#f (x+y) !

Elsa L Gunter CS576 Topics in Automated Deduction : /33

Type bool

Formulae = terms of type bool

True::bool

False::bool

= :: bool = bool

A, V, ... bool = bool

if-and-only-if: = but binds more tightly

Elsa L Gunter CS576 Topics in Automated Deduction : /33

0::nat

Suc :: nat = nat

+, X, ...::nat = nat = nat

Elsa L Gunter CS576 Topics in Automated Deduction : /33

Overloading

I' Numbers and arithmetic operations are overloaded:

0,1, 2,...:: nat or real (or others)

+ :: nat = nat = nat and

+ :: real = real = real (and others)

You need type annotations: 1 :: nat, x + (y :: nat)

... unless the context is unambiguous: Suc 0

Elsa L Gunter CS576 Topics in Automated Deduction /33

Type list

o []: empty list
@ x # xs: list with first element x (“head")
and rest xs (“tail”)

e Syntactic sugar: [X1,...,Xy| = X1# ... #xnH#[|

List is supported be a large library:
hd, tl, map, size, filter, set, nth, take, drop, distinct, ...

Don't reinvent, reuse!
~» HOL/List.thy

Elsa L Gunter CS576 Topics in Automated Deduction : /33

A Recursive datatype

datatype ’a list = Nil ("[]1")
| Cons ’a "’a list" (infixr "#’’ 65)

[1: empty list

x # xs: list with head x::'a, tail xs::'a list

A toy list: False # (True # [])
Syntactic sugar: [False, True]

Elsa L Gunter CS576 Topics in Automated Deduction /33

Concrete Syntax

When writing terms and types in .thy files
Types and terms need to be enclosed in "..."

Except for single identifiers, e.g. ’a

." won't always be shown on slides

Elsa L Gunter CS576 Topics in Automated Deduction

/ 33

Structural Induction on Lists

P xs holds for all lists xs if
oP []
@ and for arbitrary y and ys, P ys implies P (y # ys)
P ys

P (y # ys)
P xs

Elsa L Gunter CS576 Topics in Automated Deduction : /33

A Recursive Function: List Append

Definition by primitive recursion:

primrec app :: "’a list = ’a list = ’a list
where

app L1 ys =___

app (x # xs) ys = __ app xs

One rule per constructor

Recursive calls only applied to constructor arguments
Guarantees termination (total function)

Elsa L Gunter CS576 Topics in Automated Deduction : /33

Demo: Append and Reverse

CS576 Topics in Automated Deduction

	Intro to Isabelle
	Intro to HOL

