

CS576 Topics in Automated Deduction

Elsa L Gunter
2112 SC, UIUC
egunter@illinois.edu

<http://courses.grainger.illinois.edu/cs576>

Slides based in part on slides by Tobias Nipkow

January 20, 2026

Elsa L Gunter

CS576 Topics in Automated Deduction

Contact Information

- Office: 2112 SC
- Office Hours:
 - Fridays 11:00am - 12:15pm
 - Also by appointment
 - May add more if desirable
- Email: egunter@illinois.edu
- Newsgroup: <https://campuswire.com/c/GA8DC6DE7/feed>
- No TA this semester

Course Structure

- Recommended Texts:
 - Programming and Proving in Isabelle/HOL
by Tobias Nipkow
 - Isabelle/HOL: A Proof Assistant for Higher-Order Logic
by Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel
 - Concrete Semantics with Isabelle/HOL
Tobias Nipkow and Gerwin Klein,
<http://www.concrete-semantics.org>
- Credit:
 - Homework (submitted via PrairieLearn) 33%
 - Project and presentation 67%
- No Final Exam

Elsa L Gunter

CS576 Topics in Automated Deduction

Some Useful Links

- Website for class:
<http://courses.engr.illinois.edu/cs576/sp2026/>
- Website for Isabelle:
<http://www.cl.cam.ac.uk/Research/HVG/Isabelle/>
- Isabelle mailing list – to join, send mail to:
isabelle-users@cl.cam.ac.uk

Elsa L Gunter

CS576 Topics in Automated Deduction

Your Work

- Homework:
 - (Mostly) fairly short exercises in Isabelle
 - Submitted via svn
- Project:
 - Develop a model of a system in Isabelle
 - Prove some substantive properties of model
 - Discuss progress weekly in class
 - Give 20 minute presentation of work at end of course

Elsa L Gunter

CS576 Topics in Automated Deduction

Course Objectives

- To learn to do formal reasoning
- To learn to model complex problems from computer science
- To learn to give fully rigorous proofs of properties

Elsa L Gunter

CS576 Topics in Automated Deduction

System Architecture

<i>Isabelle/jEdit</i>	jEdit based interface
<i>Isar</i>	Isabelle proof scripting language
<i>Isabelle/HOL</i>	Isabelle instance for HOL
<i>Isabelle</i>	generic theorem prover
<i>Standard ML</i>	implementation language

jEdit Input

Input of math symbols in jEdit

- via “standard” ascii name: `&`, `|`, `-->`, ...
- via ascii encoding (similar to \LaTeX):
`\<and>`, `\<or>`, ...
- via menu (“Symbols”)

Symbol Translations

symbol	\forall	\exists	λ	\neg	\wedge
ascii (1)	<code>\<forall></code>	<code>\<exists></code>	<code>\<lambda></code>	<code>\<not></code>	<code>\<and></code>
ascii (2)	ALL	EX	%	\sim	&

symbol	\vee	\rightarrow	\Rightarrow
ascii (1)	<code>\<or></code>	<code>\<longrightarrow></code>	<code>\<Rightarrow></code>
ascii (2)		-->	=>

See Appendix A of tutorial for more complete list

Time for a demo of types and terms
(and a simple lemma)

Overview of Isabelle/HOL

HOL

- HOL = Higher-Order Logic
- HOL = Types + Lambda Calculus + Logic
- HOL has
 - datatypes
 - recursive functions
 - logical operators (\wedge , \vee , \rightarrow , \forall , \exists , ...)
- HOL is very similar to a functional programming language
- Higher-order = functions are values, too!

Formulae (Approximation)

- Syntax (in decreasing priority):

```
form ::= (form)      | term = term
      | ~form       | form ∧ form
      | form ∨ form | form → form
      | ∀x. form    | ∃x. form
```

and some others

- Scope of quantifiers: as far to right as possible

Elsa L. Gunter

CS576 Topics in Automated Deduction

Examples

- $\neg A \wedge B \vee C \equiv ((\neg A) \wedge B) \vee C$
- $A \wedge B = C \equiv A \wedge (B = C)$
- $\forall x. P x \wedge Q x \equiv \forall x. (P x \wedge Q x)$
- $\forall x. \exists y. P x y \wedge Q x \equiv \forall x. (\exists y. (P x y \wedge Q x))$

Elsa L. Gunter

CS576 Topics in Automated Deduction

Formulae

- Abbreviations:

$\forall x y. P x y \equiv \forall x. \forall y. P x y$ ($\forall, \exists, \lambda, \dots$)

- Hiding and renaming:

$\forall x y. (\forall x. P x y) \wedge Q x y \equiv \forall x_0 y. (\forall x_1. P x_1 y) \wedge Q x_0 y$

- Parentheses:

- \wedge , \vee , and \rightarrow associate to the right:

$A \wedge B \wedge C \equiv A \wedge (B \wedge C)$

- $A \rightarrow B \rightarrow C \equiv A \rightarrow (B \rightarrow C)$

$\not\equiv (A \rightarrow B) \rightarrow C$!

Elsa L. Gunter

CS576 Topics in Automated Deduction

Warning!

Quantifiers have low priority (broad scope) and may need to be parenthesized:

! $\forall x. P x \wedge Q x \not\equiv (\forall x. P x) \wedge Q x$!

Elsa L. Gunter

CS576 Topics in Automated Deduction

Types

Syntax:

```
τ ::= (τ)
      | bool | nat | ...
      | 'a | 'b | ...
      | τ → τ
      | τ × τ
      | τ list
      | ...
```

base types
type variables
total functions (ascii : \Rightarrow)
pairs (ascii : $*$)
lists
user-defined types

Parentheses: $T1 \Rightarrow T2 \Rightarrow T3 \equiv T1 \Rightarrow (T2 \Rightarrow T3)$

Elsa L. Gunter

CS576 Topics in Automated Deduction

Terms: Basic syntax

Syntax:

```
term ::= (term)
      | c | x
      | term term
      | λx. term
      | ...
```

constant or variable (identifier)
function application
function "abstraction"
lots of syntactic sugar

Examples: $f (g x) y$ $h (\lambda x. f (g x))$

Parentheses: $f a_1 a_2 a_3 \equiv ((f a_1) a_2) a_3$

Note: Formulae are terms

Elsa L. Gunter

CS576 Topics in Automated Deduction

λ -calculus in a nutshell

Informal notation: $t[x]$
term t with 0 or more free occurrences of x

- **Function application:**
 $f a$ is the function f called with argument a .
- **Function abstraction:**
 $\lambda x. t[x]$ is the function with formal parameter x and body/result $t[x]$, i.e. $x \mapsto t[x]$.

Elsa L. Gunter

CS576 Topics in Automated Deduction

λ -calculus in a nutshell

- **Computation:**

Replace formal parameter by actual value

(“ β -reduction”): $(\lambda x. t[x])a \rightsquigarrow_{\beta} t[a]$

Example: $(\lambda x. x + 5) 3 \rightsquigarrow_{\beta} (3 + 5)$

Isabelle performs β -reduction automatically

Isabelle considers $(\lambda x. t[x])a$ and $t[a]$ equivalent

Elsa L. Gunter

CS576 Topics in Automated Deduction

Terms and Types

Terms must be well-typed!

The argument of every function call must be of the right type

Notation: $t :: \tau$ means t is well-typed term of type τ

Elsa L. Gunter

CS576 Topics in Automated Deduction

Type Inference

- Isabelle automatically computes (“infers”) the type of each variable in a term.
- In the presence of *overloaded* functions (functions with multiple, unrelated types) not always possible.
- User can help with type annotations inside the term.
- **Example:** $f(x :: nat)$

Elsa L. Gunter

CS576 Topics in Automated Deduction

Currying

- **Curried:** $f :: \tau_1 \Rightarrow \tau_2 \Rightarrow \tau$
- **Tupled:** $f :: \tau_1 \times \tau_2 \Rightarrow \tau$

Advantage: partial application $f a_1$ with $a_1 :: \tau$

Moral: Thou shalt curry your functions (most of the time :-)).

Elsa L. Gunter

CS576 Topics in Automated Deduction

Terms: Syntactic Sugar

Some predefined syntactic sugar:

- Infix: $+$, $-$, $\#$, \otimes , \dots
- Mixfix: if_then_else_ , case_of_ , \dots
- Binders: $\forall x. P x$ means $(\forall)(\lambda x. P x)$

Prefix binds more strongly than infix:

$! f x + y \equiv (f x) + y \not\equiv f (x + y) !$

Elsa L. Gunter

CS576 Topics in Automated Deduction

Type bool

Formulae = terms of type bool

True::bool

False::bool

$\neg :: \text{bool} \Rightarrow \text{bool}$

$\wedge, \vee, \dots :: \text{bool} \Rightarrow \text{bool} \Rightarrow \text{bool}$

\vdots

if-and-only-if: = but binds more tightly

Type nat

0::nat

Suc :: nat \Rightarrow nat

$+, \times, \dots :: \text{nat} \Rightarrow \text{nat} \Rightarrow \text{nat}$

\vdots

Overloading

! Numbers and arithmetic operations are overloaded:

0, 1, 2, ...:: nat or real (or others)

$+\text{:: nat} \Rightarrow \text{nat} \Rightarrow \text{nat}$ and

$+\text{:: real} \Rightarrow \text{real} \Rightarrow \text{real}$ (and others)

You need type annotations: $1 :: \text{nat}$, $x + (y :: \text{nat})$

... unless the context is unambiguous: Suc 0

A Recursive datatype

```
datatype 'a list = Nil ("[]")  
            | Cons 'a "'a list" (infixr "#" 65)
```

$[]$: empty list

$x \# xs$: list with head $x :: 'a$, tail $xs :: 'a$ list

A toy list: $\text{False} \# (\text{True} \# [])$

Syntactic sugar: $[\text{False}, \text{True}]$

Type list

- $[]$: empty list
- $x \# xs$: list with first element x ("head") and rest xs ("tail")
- Syntactic sugar: $[x_1, \dots, x_n] \equiv x_1 \# \dots \# x_n \# []$

List is supported by a large library:
hd, tl, map, size, filter, set, nth, take, drop, distinct, ...

Don't reinvent, reuse!
 $\rightsquigarrow \text{HOL}/\text{List.thy}$

Concrete Syntax

When writing terms and types in `.thy` files

Types and terms need to be enclosed in `"..."`

Except for single identifiers, e.g. `'a`

`"..."` won't always be shown on slides

Structural Induction on Lists

$P \text{ xs}$ holds for all lists xs if

- $P \text{ []}$
- and for arbitrary y and ys , $P \text{ ys}$ implies $P \text{ (y \# ys)}$

$$\frac{\begin{array}{c} P \text{ ys} \\ \vdots \\ P \text{ (y \# ys)} \end{array}}{P \text{ xs}}$$

A Recursive Function: List Append

Definition by *primitive recursion*:

```
primrec app :: "'a list ⇒ 'a list ⇒ 'a list
where
  app [] ys = __
  app (x # xs) ys = __ app xs ... __
```

One rule per constructor

Recursive calls only applied to constructor arguments
Guarantees termination (total function)

Demo: Append and Reverse