
CS576 Topics in Automated Deduction

Elsa L Gunter
2112 SC, UIUC

egunter@illinois.edu
http://courses.grainger.illinois.edu/cs576

Slides based in part on slides by Tobias Nipkow
January 20, 2026

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 1

/ 33

Contact Information

Office: 2112 SC

Office Hours:

Fridays 11:00am - 12:15pm
Also by appointment
May add more if desirable

Email: egunter@illinois.edu

Newsgroup: https://campuswire.com/c/GA8DC6DE7/feed

No TA this semester

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 2

/ 33

Course Structure

Recommended Texts:

Programming and Proving in Isabelle/HOL
by Tobias Nipkow
Isabelle/HOL: A Proof Assistant for Higher-Order Logic
by Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel
Concrete Semantics with Isabelle/HOL
Tobias Nipkow and Gerwin Klein,
http://www.concrete-semantics.org

Credit:

Homework (submitted via PrairieLearn) 33%
Project and presentation 67%

No Final Exam

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 3

/ 33

Some Useful Links

Website for class:
http://courses.engr.illinois.edu/cs576/sp2026/

Website for Isabelle:
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/

Isabelle mailing list – to join, send mail to:
isabelle-users@cl.cam.ac.uk

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 4

/ 33

Your Work

Homework:

(Mostly) fairly short exercises in Isabelle
Submitted via svn

Project:

Develop a model of a system in Isabelle
Prove some substantive properties of model
Discuss progress weekly in class
Give 20 minute presentation of work at end of course

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 5

/ 33

Course Objectives

To learn to do formal reasoning

To learn to model complex problems from computer science

To learn to given fully rigorous proofs of properties

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 6

/ 33

System Architecture

Isabelle/jEdit jEdit based interface

Isar Isabelle proof scripting language

Isabelle/HOL Isabelle instance for HOL

Isabelle generic theorem prover

Standard ML implementation language

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 7

/ 33

jEdit Input

Input of math symbols in jEdit

via “standard” ascii name: &, |, -->, . . .

via ascii encoding (similar to LATEX):
\<and>, \<or>, . . .

via menu (“Symbols”)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 8

/ 33

Symbol Translations

symbol ∀ ∃ λ ¬ ∧
ascii (1) \<forall> \<exists> \<lambda> \<not> \<and>
ascii (2) ALL EX % ∼ &

symbol ∨ −→ ⇒
ascii (1) \<or> \<longrightarrow> \<Rightarrow>
ascii (2) | --> =>

See Appendix A of tutorial for more complete list

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 9

/ 33

Time for a demo of types and terms

(and a simple lemma)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 10

/ 33

Overview of Isabelle/HOL

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 11

/ 33

HOL

HOL = Higher-Order Logic

HOL = Types + Lambda Calculus + Logic

HOL has

datatypes
recursive functions
logical operators (∧, ∨, −→, ∀, ∃, . . .)

HOL is very similar to a functional programming language

Higher-order = functions are values, too!

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 12

/ 33

Formulae (Approximation)

Syntax (in decreasing priority):

form ::= (form) | term = term

| ¬form | form ∧ form

| form ∨ form | form −→ form

| ∀x . form | ∃x . form
and some others

Scope of quantifiers: as for to right as possible

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 13

/ 33

Examples

¬A ∧ B ∨ C ≡ ((¬A) ∧ B) ∨ C

A ∧ B = C ≡ A ∧ (B = C)

∀x. P x ∧Q x ≡ ∀x. (P x ∧Q x)

∀x.∃y. P x y ∧Q x ≡ ∀x.(∃y. (P x y ∧Q x))

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 14

/ 33

Formulae

Abbreviations:
∀x y. P x y ≡ ∀x.∀y. P x y (∀,∃, λ, . . .)
Hiding and renaming:
∀x y. (∀x. P x y) ∧Q x y ≡ ∀x0 y.(∀x1.P x1 y) ∧Q x0 y

Parentheses:

∧, ∨, and −→ associate to the right:
A ∧ B ∧ C ≡ A ∧ (B ∧ C)

A −→ B −→ C ≡ A −→ (B −→ C)

6≡ (A −→ B) −→ C !

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 15

/ 33

Warning!

Quantifiers have low priority (broad scope) and may need to be
parenthesized:

! ∀x. P x ∧Q x 6≡ (∀x. Px) ∧Q x !

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 16

/ 33

Types

Syntax:

τ ::= (τ)
| bool | nat | . . . base types
| ′a | ′b | . . . type variables
| τ ⇒ τ total functions (ascii : =>)
| τ × τ pairs (ascii : *)
| τ list lists
| . . . user-defined types

Parentheses: T1⇒ T2⇒ T3 ≡ T1⇒ (T2⇒ T3)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 17

/ 33

Terms: Basic syntax

Syntax:

term ::= (term)
| c | x constant or variable (identifier)
| term term function application
| λx . term function “abstraction”
| . . . lots of syntactic sugar

Examples: f (g x) y h (λx. f (g x))
Parentheses: f a1 a2 a3 ≡ ((f a1) a2) a3
Note: Formulae are terms

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 18

/ 33

λ-calculus in a nutshell

Informal notation: t[x]
term t with 0 or more free occurrences of x

Function application:
f a is the function f called with argument a.

Function abstraction:
λx .t[x] is the function with formal parameter x and body/result t[x],
i.e. x 7→ t[x].

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 19

/ 33

λ-calculus in a nutshell

Computation:

Replace formal parameter by actual value

(“β-reduction”): (λx .t[x])a ;β t[a]

Example: (λx . x + 5) 3 ;β (3 + 5)

Isabelle performs β-reduction automatically

Isabelle considers (λx .t[x])a and t[a] equivalent

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 20

/ 33

Terms and Types

Terms must be well-typed!

The argument of every function call must be of the right type

Notation: t :: τ means t is well-typed term of type τ

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 21

/ 33

Type Inference

Isabelle automatically computes (“infers”) the type of each variable in
a term.

In the presence of overloaded functions (functions with multiple,
unrelated types) not always possible.

User can help with type annotations inside the term.

Example: f(x::nat)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 22

/ 33

Currying

Curried: f :: τ1 ⇒ τ2 ⇒ τ

Tupled: f :: τ1 × τ2 ⇒ τ

Advantage: partial application f a1 with a1 :: τ
Moral: Thou shalt curry your functions (most of the time :-)).

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 23

/ 33

Terms: Syntactic Sugar

Some predefined syntactic sugar:

Infix: +, −, #, @, . . .

Mixfix: if then else , case of , . . .

Binders: ∀x.P x means (∀)(λx . P x)

Prefix binds more strongly than infix:

! f x + y ≡ (f x) + y 6≡ f (x + y) !

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 24

/ 33

Type bool

Formulae = terms of type bool

True::bool

False::bool

¬ :: bool⇒ bool

∧, ∨, . . . :: bool ⇒
bool⇒ bool

...
if-and-only-if: = but binds more tightly

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 25

/ 33

Type nat

0::nat

Suc :: nat⇒ nat

+, ×, . . . :: nat⇒ nat⇒ nat

...

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 26

/ 33

Overloading

! Numbers and arithmetic operations are overloaded:

0, 1, 2, . . . :: nat or real (or others)

+ :: nat ⇒ nat ⇒ nat and

+ :: real ⇒ real ⇒ real (and others)

You need type annotations: 1 :: nat, x + (y :: nat)

. . . unless the context is unambiguous: Suc 0

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 27

/ 33

Type list

[]: empty list

x # xs: list with first element x (“head”)
and rest xs (“tail”)

Syntactic sugar: [x1, . . . , xn] ≡ x1# . . .#xn#[]

List is supported be a large library:
hd, tl, map, size, filter, set, nth, take, drop, distinct, . . .

Don’t reinvent, reuse!
; HOL/List.thy

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 28

/ 33

A Recursive datatype

datatype ’a list = Nil ("[]")

| Cons ’a "’a list" (infixr "#’’ 65)

[]: empty list

x # xs: list with head x::’a, tail xs::’a list

A toy list: False # (True # [])

Syntactic sugar: [False, True]

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 29

/ 33

Concrete Syntax

When writing terms and types in .thy files

Types and terms need to be enclosed in "..."

Except for single identifiers, e.g. ’a

" ..." won’t always be shown on slides

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 30

/ 33

Structural Induction on Lists

P xs holds for all lists xs if

P []

and for arbitrary y and ys, P ys implies P (y # ys)

P ys
...

P (y # ys)

P xs

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 31

/ 33

A Recursive Function: List Append

Definition by primitive recursion:

primrec app :: "’a list ⇒ ’a list ⇒ ’a list

where

app [] ys =

app (x # xs) ys = app xs ...

One rule per constructor
Recursive calls only applied to constructor arguments
Guarantees termination (total function)

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 32

/ 33

Demo: Append and Reverse

Elsa L Gunter CS576 Topics in Automated Deduction
Slides based in part on slides by Tobias Nipkow January 20, 2026 33

/ 33

