CS576 Topics in Automated Deduction

Elsa L Gunter
2112 SC, UIUC
egunter@illinois.edu
http://courses.grainger.illinois.edu/cs576

Slides based in part on slides by Tobias Nipkow

January 20, 2026

Elsa L Gunter

Contact Information

Office: 2112 SC

o Office Hours:

o Fridays 11:00am - 12:15pm
e Also by appointment

e May add more if desirable

Email: egunter@illinois.edu
Newsgroup: https://campuswire.com/c/GA8DCEDE7/feed

No TA this semester

Elsa L Gunter CS576 Topics in Automated Deduction

CS576 Topics in Automated Deduction

Course Structure

@ Recommended Texts:

o Programming and Proving in Isabelle/HOL
by Tobias Nipkow

o lIsabelle/HOL: A Proof Assistant for Higher-Order Logic
by Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel

o Concrete Semantics with Isabelle/HOL
Tobias Nipkow and Gerwin Klein,
http://www.concrete-semantics.org

o Credit:

o Homework (submitted via PrairieLearn) 33%
o Project and presentation 67%

@ No Final Exam

Elsa L Gunter CS576 Topics in Automated Deduction i /33

o Homework:
o (Mostly) fairly short exercises in Isabelle
o Submitted via svn
@ Project:
o Develop a model of a system in Isabelle
o Prove some substantive properties of model
o Discuss progress weekly in class
o Give 20 minute presentation of work at end of course

Elsa L Gunter

CS576 Topics in Automated Deduction

Some Useful Links

@ Website for class:
http://courses.engr.illinois.edu/cs576/sp2026/

o Website for Isabelle:
http://wuw.cl.cam.ac.uk/Research/HVG/Isabelle/

@ Isabelle mailing list — to join, send mail to:
isabelle-users@cl.cam.ac.uk

Elsa L Gunter CS576 Topics in Automated Deduction i ES)

Course Objectives

@ To learn to do formal reasoning
@ To learn to model complex problems from computer science

@ To learn to given fully rigorous proofs of properties

Elsa L Gunter CS576 Topics in Automated Deduction /33



System Architecture jEdit Input

Input of math symbols in jEdit

@ via “standard” ascii name: &, |, —=>, ...
Isabelle/jEdit ~ jEdit based interface @ via ascii encoding (similar to IKTEX):
Isar Isabelle proof scripting language \<and>, \<or>, ...
Isabelle/HOL Isabelle instance for HOL @ via menu (“Symbols”)
Isabelle generic theorem prover
Standard ML implementation language

Elsa L Gunter CS576 Topics in Automated Deduction Vi Elsa L Gunter CS576 Topics in Automated Deduction

Symbol Translations
symbol v 3 A - A
ascii (1) | \<forall> | \<exists> | \<lambda> | \<not> | \<and>
ascii (2) | ALL EX t ~ u Time for a demo of types and terms
(and a simple lemma)
symbol \Y — =
ascii (1) | \<or> | \<longrightarrow> | \<Rightarrow>
ascii (2) | -—> =>

See Appendix A of tutorial for more complete list

Elsa L Gunter €S576 Topics in Automated Deduction i /33 Elsa L Gunter CS576 Topics in Automated Deduction i / 33

HOL

HOL = Higher-Order Logic
HOL = Types + Lambda Calculus + Logic
e HOL has

o datatypes
e recursive functions
o logical operators (A, V, —, V, 3, ...)

Overview of Isabelle/HOL

HOL is very similar to a functional programming language
@ Higher-order = functions are values, too!

Elsa L Gunter CS576 Topics in Automated Deduction . /33 Elsa L Gunter CS576 Topics in Automated Deduction




Formulae (Approximation) Examples

@ Syntax (in decreasing priority): e ~AABVC=((-A)AB)VC
e ANB=C=AA(B=C)

form = (form) | term = term
| form ' form A form o Vx. PxAQx=Vx. (PxAQx)
| formVform | form —s form o WxAy. Pxy AQx =¥y (PxyAQx)
| Vx. form | 3x. form

and some others

@ Scope of quantifiers: as for to right as possible

Elsa L Gunter CS576 Topics in Automated Deduction /3 Elsa L Gunter CS576 Topics in Automated Deduction

@ Abbreviations:

Vxy. Pxy=vxVy. Pxy (V,3,A...) " o
Quantifiers have low priority (broad scope) and may need to be
e Hiding and renaming: parenthesized:

Vxy. (V. Pxy)AQxy=Vxo y.(Vx1.P x1 y) AQ x0 y

o Parentheses: I V<. PxAQx#Z(Vx.Px)AQx !

e A, V, and — associate to the right:
AABAC=AA(BACQC)

e A—B—C =A—(B—0C)
#(A—B)—C !

Types Terms: Basic syntax
Syntax: Syntax:
T o= (1) term = (term)
| bool | nat | ...  base types | ¢ ] x constant or variable (identifier)
| a|'b | ... type variables | term term  function application
| =71 total functions (ascii : =>) | Ax. term function “abstraction”
| TxT pairs (ascii: *) | lots of syntactic sugar
| 7 list lists ) i
| user-defined types Examples:  f (gx)y h(Ax f(gx))
Parentheses: f a; ag ag = ((f a1) a2) ag
Parentheses: T1 = T2 = T3 = T1 = (T2 = T3) Note: Formulae are terms

Elsa L Gunter CS576 Topics in Automated Deduction . / 33 Elsa L Gunter CS576 Topics in Automated Deduction




A-calculus in a nutshell A-calculus in a nutshell

Informal notation: t[x]
term t with 0 or more free occurrences of x

o Function application:
f ais the function f called with argument a.
o Function abstraction:

Ax.t[x] is the function with formal parameter x and body/result t[x],
i.e. x — t[x].

Elsa L Gunter CS576 Topics in Automated Deduction

o Computation:
Replace formal parameter by actual value
(“B-reduction™): (Ax.t[x])a~p t[a]
Example: (Ax. x +5) 3~3 (3+5)
Isabelle performs f-reduction automatically

Isabelle considers (Ax.t[x])a and t[a] equivalent

Elsa L Gunter

The argument of every function call must be of the right type

Notation: t :: 7 means t is well-typed term of type 7

Currying
o Curried: fim=>n=>r71
o Tupled: fum xXmm=71

Advantage: partial application f a; with a; == 7
Moral: Thou shalt curry your functions (most of the time :-) ).

Elsa L Gunter

CS576 Topics in Automated Deduction

CS576 Topics in Automated Deduction

Terms and Types Type Inference

Terms must be well-typed!

o Isabelle automatically computes (“infers”) the type of each variable in
a term.

In the presence of overloaded functions (functions with multiple,
unrelated types) not always possible.

@ User can help with type annotations inside the term.
o Example: f(x::nat)

Terms: Syntactic Sugar

Some predefined syntactic sugar:

o Infix: +, —, #, 0, ...
o Mixfix: if _then_else_, case_of_, ...
@ Binders: Vx.P x means (V)(Ax. P x)

Prefix binds more strongly than infix:

I fx+y=((fx)+y#£f (x+y) !

Elsa L Gunter CS576 Topics in Automated Deduction /33



Formulae = terms of type bool
True::bool
False::bool

= :: bool = bool

A, V, ...:: bool =
bool = bool
if-and-only-if: =  but binds more tightly

Elsa L Gunter CS576 Topics in Automated Deduction

0,1, 2, ...:: nat or real (or others)

+ :: nat = nat = nat and

+ :: real = real = real (and others)

You need type annotations: 1 :: nat, x + (y :: nat)

... unless the context is unambiguous: Suc 0

Elsa L Gunter CS576 Topics in Automated Deduction i /33

0::nat
Suc :: nat = nat

+, X, ... nat = nat = nat

Elsa L Gunter CS576 Topics in Automated Deduction

Overloading Type 1ist

I Numbers and arithmetic operations are overloaded:

o [ ]: empty list
@ x # xs: list with first element x (“head”)
and rest xs (“tail")

@ Syntactic sugar: [x1,...,xn| = x1# ... #xa#[ ]

List is supported be a large library:
hd, tl, map, size, filter, set, nth, take, drop, distinct, ...

Don't reinvent, reuse!
~» HOL/List.thy

Elsa L Gunter CS576 Topics in Automated Deduction i ES)

A Recursive datatype Concrete Syntax

datatype ’a list = Nil  ("[]1")
| Cons ’a "’a list" (infixr "#’’ 65)

[1: empty list
x # xs: list with head x::'a, tail xs::'a list

A toy list: False # (True # [])

Syntactic sugar: [False, True]

Elsa L Gunter CS576 Topics in Automated Deduction

When writing terms and types in .thy files
Types and terms need to be enclosed in "..."

Except for single identifiers, e.g. ’a

." won't always be shown on slides

Elsa L Gunter CS576 Topics in Automated Deduction /33



Structural Induction on Lists A Recursive Function: List Append

P xs holds for all lists xs if
o P []
@ and for arbitrary y and ys, P ys implies P (y # ys)
P ys

P (y # ys)
P xs

Elsa L Gunter CS576 Topics in Automated Deduction

Demo: Append and Reverse

Elsa L Gunter CS576 Topics in Automated Deduction

/33

Definition by primitive recursion:
primrec app :: "’a list = ’a list = ’a list
where

app [ ys=___

app (x # xs) ys = app xs

One rule per constructor
Recursive calls only applied to constructor arguments
Guarantees termination (total function)

Elsa L Gunter CS576 Topics in Automated Deduction




