Random Walks

Ex 0 1D walk with barrier

- Ant starts at position i.
- At each step,
 - if $0 < i < n$, move to $i-1$ w. prob $\frac{1}{2}$
 - if $i = 0$, stop.
 - if $i = n$, move to $n-1$ w. prob $\frac{1}{2}$

What is expected at steps?

Note - without barrier at n, this is "Gambler's ruin"
- (with prob 1, will reach position 0
 - but $E(\text{all steps to reach 0}) = \infty$)

Graph representation:

Markov chain

Sol'n:
- Let t_i: expected # steps to reach 0
 - starting at i.

Then

- $t_0 = 0$
- $t_i = 1 + \frac{1}{2} t_{i-1} + \frac{1}{2} t_{i+1}$ for $0 < i < n$
\[t_0 = 0 \]
\[t_c = 1 + \frac{1}{2} t_{c+1} + \frac{1}{2} t_{c+1} \quad \text{left} \]
\[t_n = 1 + t_{n-1} \quad \text{right} \]

\[\Rightarrow t_i + t_i = 2 + t_{i+1} + t_{i+1} \]
\[t_i - t_{i+1} = 2 + t_{i+1} - t_i \]

Let \(d_i = t_i - t_{i+1} \)

\[\Rightarrow \begin{cases} d_i = 2 + d_{i+1} \\ d_n = 1 \end{cases} \]

\[\Rightarrow d_{n-1} = 3, \quad d_{n-2} = 5, \quad d_{n-3} = 7, \ldots \]
\[d_i = 2(n-i) + 1 \]

\[\Rightarrow \begin{cases} t_i = t_{i+1} + 2(n-i)+1 \\ t_0 = 0 \end{cases} \]

\[\Rightarrow t_i = \sum_{j=1}^{i} (2(n-j)+1) \]
\[= \sum_{j=1}^{i} (2n+1 - 2j) \]
\[= (2n+1)i - 2 \sum_{j=1}^{i} j \]
\[= 2ni - i^2 \]
\[\leq \left(\frac{n^2}{2} \right) \quad \text{quadratic!} \]

\[\text{Satisfiability (SAT)} \]
\[\text{in CNF (conjunctive normal form)} \]
Satisfiability (SAT)

Given Boolean expr E in CNF (conjunctive normal-form)

with n vars, m clauses, Booleans
does there exist assignment of values to vars st.
E evaluates to true

\[E = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x}_2) \land (x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (x_2 \lor \overline{x}_3) \]

\[\text{Yes } x_1 = 1, x_2 = 0, x_3 = 0. \]

brute force $O^*(2^n)$-time (O^* hides polynomial factors)

NP-complete, so not likely polytime

but can beat 2^n ...

\text{e.g. 3SAT:} \quad \begin{align*}
\text{take a clause } & x_1 \lor x_2 \lor x_3, \\
\text{branch on 7 cases} & \quad \Rightarrow T(n) = 7T(n-3) + O(m) \\
\Rightarrow O^*(7^{n/3}) = O^*(1.92^n). \\
\end{align*}

'85: $O^*(1.618^n)$

'93: $O^*(1.579^n)$

\vdots

'96: $O^*(1.476^n)$

\vdots

Papadimitriou's Rand. Alg'n ('91)

\begin{itemize}
\item start with any assignment A
\item repeat t times:
 \begin{itemize}
 \item if A satisfies E then return "yes"
 \item pick any clause C not satisfied by A
 \item flip any literal x in C at random
 \end{itemize}
\end{itemize}
if \(A \) satisfies \\
 - pick any clause \(C \) not satisfied by \(A \) \\
 - choose one of its literals \(\alpha \) in \(C \) at random \\
 - flip \(\alpha \)'s value in \(A \) \\
}

return "No"

(1-sided Monte Carlo)

\[C_i \cap C_2 \cap C_3 \cap C_4 \]

\[(x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2) \land (\overline{x}_1 \lor x_2 \lor x_3) \land (x_2 \lor x_3) \]

Start with \(x_1 = 1, x_2 = 0, x_3 = 1 \).

\(C_4 \) not sat, flip \(x_2 \): \(x_1 = 1, x_2 = 1, x_3 = 1 \).

\(C_3 \) not sat, flip \(x_1 \): \(x_1 = 0, x_2 = 1, x_3 = 1 \).

\(C_2 \) not sat: flip \(x_2 \): \(x_1 = 0, x_2 = 0, x_3 = 1 \).

\[\vdots \]

Analysis for 2SAT:

If \(E \) not sat, correct always.

Say \(E \) satisfied by some assignment \(A^* \).

Let \(i = \) Hamming dist. between \(A \) and \(A^* \).

\((\# \) vars assigned diff. values by \(A \) & \(A^* \))

Suppose clause \(C = \overline{\alpha_j} \lor \overline{\alpha_k} \) is picked.

In \(A \), both \(\alpha_j, \alpha_k \) are 0.

In \(A^* \), at least one of \(\alpha_j, \alpha_k \) is 1.

w.l.o.g. \(\alpha_j = 1 \), say.

w. prob \(\frac{1}{2} \), flip \(\alpha_j \) \(\Rightarrow \) \(i \) decrements

w. prob \(\frac{1}{2} \), flip \(\alpha_k \) \(\Rightarrow \) \(i \) increments or \(i \) decrements

\[0 \leq i \leq n \] always.

If \(i = 0 \), stop.

By Ex 0, expected \# steps \(\leq n^2 \).

\(\text{Set } t = \overline{2n^2} \) by Markov's Ineq. \(\Pr(\text{err}) < \frac{1}{2} \).
Set $t = 2^n \Rightarrow \Pr(\text{err}) \leq 1$.

Poly time for 2-SAT!

(not new, for 2-SAT)

What about 3-SAT?

$$t_i = 1 + \frac{1}{3} t_{i-1} + \frac{2}{3} t_{i+1}$$

$$t_i = 1 + t_{i-1} + 2t_{i+1}$$

$$t_i = t_{i-1} + 3 + 2(t_{i+1} - t_i)$$

$$d_i = 3 + 2d_{i+1}$$

$$\Rightarrow \Theta(2^n) \quad \text{bad!!}$$

Schönig's Alg'm ('99)

Start with a random assignment A

Do same as Papadimitriou

But for $t = 3n$ steps

Claim $\Pr(\text{correct}) \geq \left(\frac{3}{4}\right)^n$ for 3-SAT.

Repeat $c(\frac{4}{3})^n$ times

$\Rightarrow \Pr(\text{err}) \leq \left(1 - \left(\frac{3}{4}\right)^n\right)^c \leq e^{-c}$

$\Rightarrow O^c \left(\left(\frac{4}{3}\right)^n\right) = O^c(1.33...^n)$