AND-OR Tree Evaluation

Given complete binary tree with \(N = 2^k \) leaves, where levels are alternately AND/OR, and given values at the leaves, evaluate the value at root.

![Tree Diagram]

Applications:
- Game trees (minimax tree),
- Quantifier SAT
 \[
 \exists x_1 \forall x_2 \exists x_3 \ldots f(x_1, \ldots, x_k)
 \]

Trivial Algorithm: \(O(N) \) time

Known Heuristics: \(\alpha-\beta \) pruning, etc.

Deterministic Lower Bound: Every deterministic algorithm requires \(\Omega(N) \) time in worst case, in fact, has to inspect all \(N \) leaves.

Proof Sketch: by "adversary argument"

Say you are the algorithm, I = will construct a bad input (depending on the algorithm)

OR

AND
Snir's Alg'm ('85)

eval(u):
 if u is a leaf, return u's value
 let u₁, u₂ be u's children
 if u is OR
 if eval(u₁) = 1 return 1
 else return eval(u₂)
 if u is AND
 if eval(u₁) = 0 return 0
 else return eval(u₂)

(Las Vegas)

Analysis of Expected Time:

Call an OR node good if its value is 1, bad else
AND node good if its value is 0, bad else

let Gₖ = expected cost for a good node at level k
Bₖ = a " " " bad " " "

W.l.o.g. u is an OR node.

Case 1: u is bad.
 2 recursive calls
 \[Bₖ \leq 2G_{k-1} \]

Case 2: u is good.
Case 2: \(u \) is good.

Subcase 1. \(u_1, u_2 \) both 1

1. recursive call

Subcase 2. \(u_1, u_2 \) one 1, one 0

Prob \(\frac{1}{2} \): \(\frac{1}{2} \) recursive call bad, \(\frac{1}{2} \) recursive call good

Prob \(\frac{1}{2} \): \(\frac{1}{2} \) recursive calls

\[G_k \leq B_{k-1} + \frac{1}{2} G_{k-1} \]

Combine \(\Rightarrow \)

\[G_k \leq 2 G_{k-2} + \frac{1}{2} G_{k-1} \]

"Fibonacci-like" recurrence

Guess \(G_k \leq x^k \).

Want \(2x^{k-2} + \frac{1}{2} x^{k-1} = x^k \)

\[2 + \frac{1}{2} x = x^2 \]

\[2x^2 - x - 4 = 0 \]

\[x = \frac{1 + \sqrt{33}}{4} \approx 1.69 \]

\(\Rightarrow \)

\[G_{k-1} B_k = O\left(\left(\frac{1 + \sqrt{33}}{4} \right)^k \right) \quad k = \log_2 N \]

\[\left(\frac{\log N}{N \log N} \right) \]

\[= O\left(N^{\log_2 (1 + \sqrt{33})/4} \right) \]

\[= O\left(N^{0.754} \right) \]

expected sublinear!

Rand. Lower Bd?

Yao's Principle: To prove lower bd on expected runtime of rand. Las Vegas algns on worst-case input.
Suffices to prove lower bound on
expected runtime of det. algns
on rand. input.
(under an input distribution of your choices)

Formally: Fix input size n.

Let A_1, A_2, \ldots be all correct det. algns.

Let I_1, I_2, \ldots be all possible inputs.

Let $t_{ij} = \text{runtime of } A_i \text{ on } I_j$.

Rand. algm can be viewed as picking
a random A_i under distribution p_i.

Let $q_j = \text{prob. of picking } I_j$.

Yao's Principle (restated formally)

\[
\forall p_1, p_2, \ldots, \text{ with } \sum p_i = 1, \quad \forall q_1, q_2, \ldots \text{ with } \sum q_j = 1
\]

\[
\max_j \left(\sum_i p_i t_{ij} \right) \geq \min_i \left(\sum_j q_j t_{ij} \right)
\]

\[
\text{expected runtime} \quad \text{of rand. algm on } I_j
\]

\[
\text{expected runtime} \quad \text{of } A_i \text{ on rand. input}
\]

Pf:

\[
\max_j \left(\sum_i p_i t_{ij} \right) \geq \sum_j q_j \left(\sum_i p_i t_{ij} \right)
\]

\[
= \sum_{i,j} p_i q_i t_{ij}
\]

\[
= \sum_i p_i \left(\sum_j q_j t_{ij} \right)
\]

\[
\geq \min_j \sum_i q_j t_{ij}. \quad \square
\]

Remark: Also follows from LP duality
or von Neumann's minimax theorem
from classical 2-player game theory.
or von Neumann's minimax...
from classical 2-player game theory.