Randomized Complexity Classes

ZPP = all languages (i.e. decision problems) with Las Vegas algorithms in expected polytime

RP = all languages \(L \) with one-sided Monte Carlo algorithms in worst-case polytime

\[
\begin{align*}
\text{St.: } & \text{Input } x, \\
& \left\{ \begin{array}{ll}
\text{if } x \in L \Rightarrow & \Pr[A \text{ outputs yes }] \geq \frac{1}{2} \\
\text{if } x \notin L \Rightarrow & \Pr[A \text{ outputs no }] = 1
\end{array} \right.
\end{align*}
\]

Rmk.: \(\frac{1}{2} \) can be changed to any constant \(\epsilon \in (0,1) \) by repeating & taking OR of output (with \(t \) iterations, err prob \(\leq \frac{1}{2^t} \)).

(e.g. Miller-Rabin: \textsc{Composite} \(\in \textbf{RP} \))

Adleman-Huang: \textsc{"\u0105"} \(\in \textbf{ZPP} \)

AKS: \textsc{\u0105} \(\in \textbf{P} \)

Fact 1. \(P \subseteq \textbf{ZPP} \subseteq \textbf{RP} \) (by Markov).

Fact 2. \(\textbf{RP} \subseteq \textbf{NP} \).

Pf: Certificate = seq of rand bits. \(\pentagram \)

Fact 3. \(\textbf{ZPP} = \textbf{RP} \cap \textbf{co-RP} \).

Pf. \(\pentagram \) since \(\textbf{ZPP} = \textbf{co-ZPP} \).
Pf: (C) ... since ZPP = co-ZPP.

(2) Suppose we have 2 one-sided Mont-Carlo algms A for L
and A' for L^c.

run both: if A says no, know $x \notin L$.
if A' says no, know $x \in L$.

$\mathbb{w.prob} \leq \frac{1}{2}$ \implies otherwise repeat

RP is the set of languages with

*iterations ≤ 2.

$\text{BPP} = \text{all languages } L \text{ with }$ 2-sided Monte-Carlo algms in Poly-time

Sit. A input x,
if $x \in L \implies \Pr[A \text{ outputs yes on } x] > \frac{3}{4}$
if $x \notin L \implies \Pr[A \text{ outputs no on } x] > \frac{1}{2}$

Rmk: $\frac{3}{4}$ can be changed to any const $\epsilon (\frac{1}{2}, 1)$.
by repeating & taking majority of output

(with t repetitions, err prob $\leq \frac{1}{2^{O(t)}}$ by Chernoff bd...)

(if exactly $\frac{1}{2}$, we get different class PP)
Fact 4 \(\text{RP} \leq \text{BPP} \). (also, \(\text{co-RP} \leq \text{BPP} \), since \(\text{BPP} = \text{co-BPP} \))

Upper bd for \(\text{BPP} \)?

Known: (Sipser-Sac, Lauterman '83) \(\text{BPP} \leq \text{NP} \cap \text{co-NP} \)

In fact, \(\text{BPP} \leq \text{ZPP} \cap \text{NP} \)

In fact, \(\text{MA} \leq \text{ZPP} \cap \text{NP} \) (Goldreich-Forteman '97)

Possibility of general derandomization?

Then (Adelman '78) \(\text{RP} \leq \text{P/poly} \).

All languages \(L \) that can be solved by

- A non-uniform det. alg \(\text{m} \) in polytime

i.e. a sequence of algs \(\text{A}_1, \text{A}_2, \ldots, \text{A}_n, \ldots \)

- one for each input size \(n \)

Or : equiv. polytime alg \(\text{m} \) that is given on advice

String with poly length

Not relevant to us
or equiv.

- aym n
- string with poly length depending on n.

or equiv: Poly-size circuit

Pr:

By repeating cn times, runtime still poly.

get an algorithm with err prob. \(\leq \frac{1}{2^cn} \)

Fix \(n \).

Pick random sequence \(r \) of \(T(n) \) bits.

For any fixed input \(x \) of size \(n \),

\[\Pr(\text{alg is wrong on } x \text{ using } r) \leq \frac{1}{2^cn} \]

By union bound,

\[\Pr(\exists x \text{ of size } n, \text{ alg is wrong on } x \text{ using } r) \leq 2^n \cdot \frac{1}{2^cn} < 1 \text{ for } c > 1 \]

there exists sequence \(r \) s.t.

\(\exists \text{ input } x \text{ of size } n, \text{ alg using } r \text{ is correct on } x \).

this is a nonunif. algorithm.

\(\square \)

Big Open Problem

Is \(\text{BPP} = \text{P} \)?

Known: Impagliazzo & Wigderson '97 showed

\(\text{BPP} = \text{P} \) if there is a problem in \(\text{E} = \text{DTIME}(2^{O(n)}) \)...it complexity.
\[
\text{BPP} = \text{DTIME}(\leq 2^{\text{polylog}(n)})
\]

("hardness vs. randomness")

\[
\text{NP} \supset \text{BQP} \supset \text{P}
\]

Random Re-Ordering

Example: find min of \(n\) numbers \(S = \{x_1, \ldots, x_n\}\)

Standard incremental alg'nm:

0. \(\text{ans} = \infty\) ------ \(\text{RANDOMly permute } x_1, \ldots, x_n\)
1. for \(i = 1, \ldots, n\)
2. if \(x_i < \text{ans}\)
3. \(\text{ans} = x_i\) \(\text{(*)}\)
4. return \(\text{ans}\)

\(O(n)\) time \(\text{(n-1 comps)}\)

How many changes \(\text{(*)}\)?
Worst-case: \(n\) times
Expected? \(\left(\frac{n}{n-1, \ldots, 1}\right)\)
naively: list all $n!$ permutations, compute Q, take avg, ...

rewrite algm backwards:

\[
\begin{align*}
\min(S): & \\
0. \text{ if } S = \emptyset \text{ return } \infty \\
1. \text{ pick } x \in S \text{ randomly} \\
2. \text{ ans } = \min(S - \{x\}) \\
3. \text{ if } x \leq \text{ ans} \\
4. \quad \text{ ans } = x \\
5. \text{ return ans}
\end{align*}
\]

For any fixed S,

\[
\Pr \left[(\ast) \text{ is done} \right] = \Pr \left[x < \min(S - \{x\}) \right] = \Pr \left[x = \min(S) \right] = \frac{1}{n}.
\]

\[\implies \text{ expected total # changes} \]

\[
F(n) = F(n-1) + \frac{1}{n} \cdot 1 + \left(-\frac{1}{n} \right) \cdot 0
\]

by linearity of expectation

\[\implies F(n) = \frac{1}{n} + \frac{1}{n-1} + \frac{1}{n-2} + \ldots + \frac{1}{2} + 1 \]

(Harmonic numbers)

\[= \Theta(\log n)\]