Instructions: As in first homework.

4 (100 PTS.) Skip in peace.
You are given a set of n elements e_{1}, \ldots, e_{n}. Consider the following randomized algorithm - in step one, it creates a node n_{1} that stores e_{1}. In the i th step, it creates a node n_{i} (that stores e_{i}), randomly picks a random number $\alpha_{i} \in \llbracket i-1 \rrbracket=\{1,2, \ldots, i-1\}$, and creates a directed edge from n_{i} to $n_{\alpha_{i}}$.
This algorithm computes a random directed tree T with n nodes (the tree is a reverse tree). Let L be the length of the longest path in T .
4.A. Prove an upper bound on the expected length of L.
4.B. Prove a lower bound on the expected length of L (it should match the bound from (A) up to a constant).
4.C. Prove that the bounds above hold with high probability on L itself (i.e., not on the expectation). That is your upper/lower bound has to hold with probability $\geq 1-1 / n^{c}$, where $c \geq 4$.
(The upper bound is not difficult, the lower bound requires some cleverness.)
5 (100 PTS.) Chernoff inequality is tight by direct calculations.
For this question use only basic argumentation - do not use Stirling's formula, Chernoff inequality or any similar "heavy" machinery. This question is more tedious than hard.
5.A. Prove that $\sum_{i=0}^{n-k}\binom{2 n}{i} \leq \frac{n}{4 k^{2}} 2^{2 n}$.

Hint: Consider flipping a coin $2 n$ times. Write down explicitly the probability of this coin to have at most $n-k$ heads, and use Chebyshev inequality.
5.B. Using (A), prove that $\binom{2 n}{n} \geq 2^{2 n} / 4 \sqrt{n}$ (which is a pretty good estimate).
5.C. Prove that $\binom{2 n}{n+i+1}=\left(1-\frac{2 i+1}{n+i+1}\right)\binom{2 n}{n+i}$.
5.D. Prove that $\binom{2 n}{n+i} \leq \exp \left(\frac{-i(i-1)}{2 n}\right)\binom{2 n}{n}$.
5.E. Prove that $\binom{2 n}{n+i} \geq \exp \left(-\frac{8 i^{2}}{n}\right)\binom{2 n}{n}$.
5.F. Using the above, prove that $\binom{2 n}{n} \leq c \frac{2^{2 n}}{\sqrt{n}}$ for some constant c (I got $c=0.824 \ldots$ but any reasonable constant will do).
5.G. Using the above, prove that

$$
\sum_{i=t \sqrt{n}+1}^{(t+1) \sqrt{n}}\binom{2 n}{n-i} \leq c 2^{2 n} \exp \left(-t^{2} / 2\right)
$$

In particular, conclude that when flipping fair coin $2 n$ times, the probability to get less than $n-t \sqrt{n}$ heads (for t an integer) is smaller than $c^{\prime} \exp \left(-t^{2} / 2\right)$, for some constant c^{\prime}.
5.H. Let X be the number of heads in $2 n$ coin flips. Prove that for any integer $t>0$ and any $\delta>0$ sufficiently small, it holds that $\mathbb{P}[X<(1-\delta) n] \geq \exp \left(-c^{\prime \prime} \delta^{2} n\right)$, where $c^{\prime \prime}$ is some constant. Namely, the Chernoff inequality is tight in the worst case.

6 (100 PTS.) Tail inequality for geometric variables.
Let X_{1}, \ldots, X_{m} be m independent random variables with geometric distribution with probability p (i.e., $\mathbb{P}\left[X_{i}=j\right]=(1-p)^{j-1} p$). Let $Y=\sum_{i} X_{i}$, and let $\mu=\mathbf{E}[Y]=m / p$. Prove that $\mathbb{P}[Y \geq(1+\delta) \mu] \leq \exp \left(-\frac{\delta^{2}}{8} m\right)$. Here $\delta \in(0,1 / 4)$. (A proof with a different constant than 8 is also fine.)
Hint: Consider an infinite sequence B of IID (independent and identically distributed) random bits b_{1}, b_{2}, \ldots, where $b_{i}=1$ with probability p.

