
Lecture 9: Streaming Algorithms

1 Introduction to Streaming Algorithms

This lecture provides an introduction to streaming, sampling, and estimation algorithms.

1.1 Setting

We are given a set of objects or tokens that arrive one by one in a stream (online fashion):

e1, e2, . . . , em

Examples of stream elements ei:

• A number from a set [n] = {1, . . . , n}.

• An edge (u, v) in a graph.

• A vector or point in Rd.

• A row or column of a matrix.

• A matrix itself.

Assumption: The stream length m is very large and possibly unknown. We cannot afford to store
all elements e1, . . . , em in memory. We have a limited memory space, say B units (where one token takes
one unit of space).

Question: What functions of the input stream can we compute? This depends on the available
space B. There are various trade-offs between efficiency, accuracy, etc.

1.2 Frequency Vectors

A simple but powerful setting is when each element ei is an integer from a large range, say [n] =
{0, 1, . . . , n− 1}. For example, consider a stream: 5, 3, 2, 2, 10, 5, 90, . . . This stream implicitly defines a
frequency vector f ∈ Nn that starts at all zeros. For each incoming element ei, we effectively perform an
update fei ← fei + 1. After the stream 5, 3, 2, 2, 10, 5, 90, the frequency vector would have f2 = 2, f3 =
1, f5 = 2, f10 = 1, f90 = 1, and all other entries would be zero.

2 Frequency Moment Estimation

Given a stream e1, . . . , em, let fi be the frequency of element i ∈ [n] at the end of the stream. We want
to estimate or compute the kth frequency moment, denoted by Fk.

Fk =

n∑
i=1

fk
i

(Note: Sometimes this is defined as the Lk-norm of the frequency vector, i.e., (
∑n

i=1 f
k
i )

1/k).

• k=0: F0 =
∑

fi>0 1. This is the number of **distinct elements** in the stream.

• k=1: F1 =
∑

fi = m. This is the total length of the stream.

• k=2: F2 =
∑

f2
i . This is related to the squared Euclidean norm (L2 norm) of the frequency vector

and is very important in many applications.
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• k=∞: F∞ = maxi fi. This is the frequency of the most frequent element, used in finding ”heavy
hitters”.

If we can store the entire stream or the frequency vector f , these problems are trivial. The main question
is: can we compute or estimate these moments with memory B ≪ n? The answer is yes, often with
B = Õ(1) (polylogarithmic space), but this requires randomization and approximation. It can be shown
that without one of these, it’s not feasible with sub-linear (o(n)) memory.

3 Reservoir Sampling

3.1 Sampling One Element

Given a stream e1, . . . , em where m is unknown, we want to pick one sample uniformly at random.

Algorithm 1 Reservoir Sampling (1 element)

1: m← 0
2: s← null
3: while stream has next element e do
4: m← m+ 1
5: With probability 1/m, set s← e.
6: end while
7: output s

3.2 Sampling k Elements

To get k samples without replacement, we can extend the algorithm.

Algorithm 2 Reservoir Sampling (k elements)

1: S ← ∅
2: m← 0
3: while stream has next element em do
4: m← m+ 1
5: if m ≤ k then
6: Add em to S.
7: else
8: With probability k/m:
9: Replace a random element of S with em.

10: end if
11: end while
12: output S

Exercise 1. Prove the correctness of the k-element Reservoir Sampling algorithm.

4 Distinct Element Estimation (F0)

The problem is to find the number of distinct elements in a stream e1, . . . , em where each ei ∈ [n].

• Example: In the stream 1, 2, 5, 2, 3, 5, 5, 1, the distinct elements are {1, 2, 3, 5}, so F0 = 4.

• Application: In a high-speed internet switch, packets are tuples of (source, destination, content).
Source and destination are IP addresses (e.g., 128-bit values, so n = 2128). A key question is: how
many distinct source addresses have sent packets?

An offline solution could use a hash table or dictionary to store distinct elements seen so far. This
would require Θ(F0) space, which can be very large and is not suitable for a streaming model where F0

is unknown and potentially massive.
It can be shown that any deterministic algorithm that gives a (1 ± ϵ) approximation requires Ω(n)

space. However, with randomization, we can get a (1 ± ϵ) estimate with probability at least (1 − δ) in
O( 1

ϵ2 log
1
δ · polylog(n)) space.
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4.1 Hashing-Based Algorithm (Flajolet-Martin)

Assume we have access to an ”ideal” hash function h : [n] → [0, 1] that maps each item to a uniformly
random real number.

Algorithm 3 Basic Distinct Elements Hashing

1: Pick a random hash function h : [n]→ [0, 1].
2: z ←∞.
3: while stream has next element ei do
4: z ← min(h(ei), z).
5: end while
6: output 1

z − 1.

This algorithm uses memory for only one number, z.

Lemma 1. Suppose X1, X2, . . . , Xk are independent random variables uniformly distributed in [0, 1]. Let
Y = mini=1,...,k Xi. Then:

1. E[Y ] = 1
k+1

2. Var(Y ) = k
(k+1)2(k+2)

Proof Sketch. Let FY (t) and fY (t) be the CDF and PDF of Y . For t ∈ (0, 1):

FY (t) = P (Y ≤ t) = 1− P (Y > t) = 1− P (X1 > t, . . . ,Xk > t) = 1− (1− t)k

The PDF is the derivative:
fY (t) = k(1− t)k−1

The expectation is:

E[Y ] =

∫ 1

0

t · fY (t)dt =
∫ 1

0

tk(1− t)k−1dt =
1

k + 1

Similarly, one can calculate E[Y 2] = 2
(k+1)(k+2) , which gives:

Var(Y ) = E[Y 2]− (E[Y ])2 =
2

(k + 1)(k + 2)
− 1

(k + 1)2
=

k

(k + 1)2(k + 2)

If F0 = k, our estimator Z is the minimum of k uniform random variables. The algorithm’s output
1
Z −1 is an unbiased estimator for k, since E[ 1Z −1] ≈ 1

E[Z] −1 = 1
1/(k+1) −1 = k. However, the variance

is too high for a good approximation with a single estimate. Using Chebyshev’s inequality shows that
the probability of being close to the mean is not high enough.

4.2 Variance Reduction

4.2.1 Averaging

To reduce variance, we can average multiple independent estimators. Let Y1, . . . , Yh be i.i.d. random
variables with mean µ and variance σ2. Let their average be Ȳ = 1

h

∑h
i=1 Yi. Then:

E[Ȳ ] = µ and Var(Ȳ ) =
σ2

h

The variance is reduced by a factor of h.
We apply this to our problem. We run the basic algorithm h times in parallel, each with an indepen-

dent hash function hj . This gives us h minimum values z1, . . . , zh. Let Z = 1
h

∑h
j=1 zj . Our final output

is Y = 1
Z − 1.

• E[Z] = 1
k+1

• Var(Z) =
Var(zj)

h ≤ 1
h(k+1)(k+2)

3



Using Chebyshev’s inequality on Z:

P (|Z − E[Z]| ≥ δ · E[Z]) ≤ Var(Z)

(δE[Z])2

To get a (1 ± ϵ) approximation for F0 = k, we need Z to be within a certain range of its mean. A
calculation shows that if we set h = O(1/ϵ2), we can get a good estimate with constant probability.

4.2.2 Median Trick

To boost the success probability from a constant to (1− δ), we can use the median trick. This provides
a better dependency on δ than simple averaging.

1. Create a ”base estimator” that is a (1 ± ϵ)-approximation with probability at least 3/4. We can
do this by averaging h = O(1/ϵ2) basic estimators as described above.

2. Run this base estimator l times independently to get estimates Y1, Y2, . . . , Yl.

3. Output Y = median(Y1, . . . , Yl).

Figure 1: Illustration of the median trick from the lecture notes. The true value is k. The interval
[(1 − ϵ)k, (1 + ϵ)k] contains most estimates (Y1, Y5, Y6, Y2, Y7). Outliers like Y3 and Y4 are ignored by
taking the median, which is much more likely to fall within the desired interval.

Lemma 2. Let Yi be independent estimators such that P [(1 − ϵ)k ≤ Yi ≤ (1 + ϵ)k] ≥ 3/4. If we take
l = O(log(1/δ)), then the median Y is a (1± ϵ) approximation of k with probability at least 1− δ.

Proof Sketch using Chernoff Bounds. Let Ai be the event that Yi is a ”good” estimate (within the desired
interval). P (Ai) ≥ 3/4. For the median to be ”bad” (outside the interval), at least l/2 of the estimators
Yi must be ”bad”. Let Bi be an indicator variable for Yi being ”bad”. P (Bi = 1) ≤ 1/4. Let B =

∑
Bi.

E[B] ≤ l/4. We want to bound the probability P (B ≥ l/2). By Chernoff bounds, this probability is
exponentially small in l.

P (B ≥ l/2) = P (B ≥ 2E[B]) ≤ e−c·l/4

By setting l = O(log(1/δ)), we can make this probability less than δ.

4.3 Final Hashing Algorithm and Analysis

The full algorithm combines both techniques.
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Algorithm 4 Full Distinct Elements Algorithm

1: Given ϵ, δ. Let h = O(1/ϵ2) and l = O(log(1/δ)).
2: for i = 1 to l do
3: Run h parallel instances of the basic hashing algorithm with independent hash functions

hi,1, . . . , hi,h to get minimums zi,1, . . . , zi,h.

4: Xi ← 1
h

∑h
j=1 zi,j .

5: Yi ← 1
Xi
− 1.

6: end for
7: output median(Y1, . . . , Yl).

This algorithm uses O(h · l) = O( 1
ϵ2 log

1
δ ) space (for storing the minimums). It outputs a (1 ± ϵ)

approximation with probability at least (1− δ).
Practical consideration: The ”ideal” hash function to [0, 1] can be approximated by hashing to

a large integer range, like [n3], and then normalizing. Pairwise independent hash functions are often
sufficient.

5 A Simpler Sampling-Based Algorithm

A more recent and surprisingly simple algorithm is based on sampling. Idea: Suppose we sample each
of the F0 distinct elements with a fixed probability p. If we end up with a sample B, then E[|B|] = p ·F0.
So, |B|/p is an unbiased estimator for F0.

Challenges:

1. How do we sample from the set of *distinct* elements when the stream contains duplicates?

2. How do we choose p? If p is too small, |B| will be small and the estimate inaccurate. If p is too
large, the sample set B might be too large to store in memory.

Solution to (1): We can adapt the sampling procedure. Maintain a sample set B. For each new
element em:

1. If em is already in B, remove it.

2. Add em to B with probability p.

This procedure ensures that at the end of the stream, each distinct element is present in the final set B
with probability p.

Solution to (2): The key idea is to adapt the sampling probability p dynamically. Start with p = 1
and decrease it whenever the sample set B grows too large.

Algorithm 5 Adaptive Distinct Element Sampling

1: Given ϵ. Choose a threshold τ = O( logn
ϵ2 ).

2: p← 1, B ← ∅.
3: while stream has next element em do
4: B ← B \ {em} (remove if present)
5: With probability p, add em to B.
6: if |B| ≥ τ then
7: p← p/2.
8: Subsample B: for each element in B, discard it with probability 1/2.
9: end if

10: end while
11: output |B|/p.

Theorem 1. The adaptive sampling algorithm uses O( logn
ϵ2 ) words of memory and outputs an estimate

that is within (1± ϵ)F0 with high probability.
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