
Lecture 8: Hash Tables with Linear Probing

Hash Tables with Linear Probing

We saw hashing with chaining. Using universal hashing we get expected O(1)
time per operation. One disadvantage is that chaining requires a list data struc-
ture at each bucket. Today we will discuss another popular technique called
linear probing. We will mostly be following Kent Quanrud’s thesis, which has
nice figures and more detailed explanations, including historical notes. For this
reason, we will be high-level in our description.

Linear Probing

Let the universe be U , with |U | = u. The size of the hash table is A[0 . . .m−1].
We pick a random hash function h from a hash family H.

Algorithm 1 insert(x)

i← h(x)
while A[i] is not empty do

i← (i+ 1) (mod m)

A[i]← x

Algorithm 2 find(x)

i← h(x)
while A[i] is not empty do

if A[i] = x then
return Yes

i← (i+ 1) (mod m)

return No

The delete(x) operation is more complicated. There are different strate-
gies, but we want to maintain the correctness of insert and find. To delete x,
we first find it. Say x is in A[i]. If we just set A[i] = empty, we create a ”hole”.
This could cause a subsequent find for an element whose probe sequence passed
through i to fail incorrectly.
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We must fill the hole. One strategy is to scan from i to the right. We look
for an element y in the same block of occupied cells that can be moved to fill
the hole at i. This process is repeated until the created hole can be filled by an
empty cell.

Algorithm 3 delete(x)

i← location of x found by find(x)
if i is invalid then return
A[i]← empty
j ← i
loop

j ← (j + 1) (mod m)
if A[j] is empty then

break
Let y = A[j]
Re-insert y starting from its hash position h(y), effectively moving it if

necessary to fill the original hole. This can be complex; a simpler (but correct)
method is to re-insert all items in the run following the hole.

Note: The handwritten notes contain a more complex, potentially incomplete
pseudocode for a specific hole-filling strategy. The algorithm above describes the
general principle.

Analysis

Let’s assume ”ideal” hash functions (each key is mapped to a slot uniformly and
independently). How can we upper bound the cost of the operations? Suppose
we perform n operations. Let S be the set of elements that were ever inserted.
We will assume m > 2n. We will consider the state of the hash table as if we
had inserted all the elements in S.

The hash table A will be broken into ”runs”, where a run is a maximal
contiguous interval of occupied cells. The key observation is the following:
The cost of insert(x), find(x), and delete(x) are all upper-bounded by the
length of the run that contains the slot h(x). Let’s call this run R(x).

Our goal is to analyze the expected length of this run. What is E[|R(x)|]?

Lemma 1. If m > 2en, under the ideal hashing assumption, then for any x,
E[|R(x)|] = O(1).

This lemma implies that the total expected cost for n operations is O(n).

Proof. Let R denote the run R(x), and let h(x) = i. The expected length of
the run is:

E[|R|] =
n∑

l=1

l · P [|R| = l]
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Consider an interval I of length l that contains the slot i. There are l such
possible intervals. Let’s fix one such interval, say Ij . For the run containing i
to be exactly this interval Ij , two conditions must be met:

1. All l slots in Ij must be occupied by elements from S.

2. The two slots bordering Ij must be empty.

By symmetry, the probability that the run R is equal to any specific valid
interval of length l is the same. Thus, P [|R| = l] is related to l ·P [R = Ij ] for a
fixed Ij .

Let’s find an upper bound on the probability that a specific interval Ij of
length l contains the run. For this to happen, at least l elements from S must
hash into Ij . The probability of this is:

P [at least l items of S hash to Ij ] ≤
(
n

l

)(
l

m

)l

Using the inequality
(
n
k

)
≤ ( enk )k, we get:

≤
(en

l

)l( l

m

)l

=
(en
m

)l
Given our assumption thatm ≥ 2en, we have en

m ≤
1
2 . Therefore, the probability

is at most ( 12 )
l. Now we can bound the expected run length.

E[|R|] ≤
n∑

l=1

l ·
(
l · 1

2l

)
=

n∑
l=1

l2

2l

This sum
∑∞

l=1 l
2xl converges for |x| < 1. For x = 1/2, the sum is a constant.

Thus, E[|R|] = O(1).

Analysis with 5-Universal Hashing

The above analysis assumed ideal hashing. It turns out that a similar result can
be obtained with a weaker assumption: 5-universal hashing.

Lemma 2. Suppose H is a 5-strongly universal hash family from [u]→ [m] and
m ≥ 8n. Then the expected cost of each of the first n operations is O(1).

To prove this, we need a concentration inequality for 4-wise independent
random variables, which generalizes Chebyshev’s inequality.

Lemma 3 (Concentration Inequality). Suppose X1, . . . , Xn ∈ {0, 1} are 4-wise
independent random variables. Let X =

∑n
i=1 Xi and µ = E[X]. Then for any

β > 0:

P [X ≥ µ+ β] ≤ µ+ 3µ2

β4
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Proof of O(1) cost using 5-universal hashing. Let’s assume the concentration lemma.
We want to bound E[|R|]. We can write:

E[|R|] =
∞∑
l=1

P [|R| ≥ l] ≤
⌈logn⌉∑
k=1

2kP [|R| > 2k−1]

Let’s bound the probability P [|R| > 2k−1]. Let h(x) = i. Consider an interval
Ik of length 2k+1 centered at i. If the run R(x) has length greater than 2k−1,
then at least 2k−1 elements must have hashed into an interval of size at most
2k+1 around i.

Let Xa be the indicator random variable that element a ∈ S \ {x} hashes
into Ik. Let X =

∑
a∈S\{x} Xa. Since our hash family is 5-strongly univer-

sal, conditioning on h(x) = i leaves the hash values of other elements 4-wise
independent. Thus, the variables Xa are 4-wise independent.

The expected value of X is:

µ = E[X] =
∑

a∈S\{x}

E[Xa] =
∑

a∈S\{x}

P [h(a) ∈ Ik] ≤ n · |Ik|
m

= n · 2
k+1

m

With m ≥ 8n, we have:

µ ≤ n · 2
k+1

8n
=

2k+1

8
= 2k−2

The event |R| > 2k−1 implies that X ≥ 2k−1. We use our concentration lemma
to bound this probability. Let β = 2k−1 − µ ≥ 2k−1 − 2k−2 = 2k−2.

P [X ≥ 2k−1] = P [X ≥ µ+ (2k−1 − µ)] ≤ P [X ≥ µ+ 2k−2]

Applying the lemma with β = 2k−2 and µ ≤ 2k−2:

≤ µ+ 3µ2

β4
≤ 2k−2 + 3(2k−2)2

(2k−2)4
=

1 + 3 · 2k−2

(2k−2)3
≤ 4 · 2k−2

(2k−2)3
=

4

(2k−2)2

Now we plug this back into the sum for E[|R|]:

E[|R|] ≤
⌈logn⌉∑
k=1

2k·P [|R| > 2k−1] ≤
∞∑
k=1

2k· 4

(2k−2)2
=

∞∑
k=1

2k· 4

22k−4
=

∞∑
k=1

64 · 2k

22k
=

∞∑
k=1

64

2k

This is a convergent geometric series, so E[|R|] = O(1).

Proof of Concentration Lemma. We want to prove P [X ≥ µ + β] ≤ µ+3µ2

β4 .

Using Markov’s inequality on the non-negative random variable (X − µ)4:

P [X − µ ≥ β] = P [(X − µ)4 ≥ β4] ≤ E[(X − µ)4]

β4
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Our task is to bound E[(X−µ)4]. Let pi = E[Xi], so µ =
∑

pi. Let Yi = Xi−pi.
Note that E[Yi] = 0. Then X − µ =

∑
Yi.

E[(X − µ)4] = E

( n∑
i=1

Yi

)4
 = E

 ∑
i,j,k,l∈[n]

YiYjYkYl


By linearity of expectation, this is

∑
i,j,k,l E[YiYjYkYl]. Because the variables

are 4-wise independent and E[Yi] = 0, any term where an index appears only
once will be zero. For example, E[YiY

3
j ] = E[Yi]E[Y 3

j ] = 0 for i ̸= j. The only

non-zero terms are of the form E[Y 4
i ] and E[Y 2

i Y
2
j ] for i ̸= j. The expansion of

(
∑

Yi)
4 gives:

• Terms of type Y 4
i : There are n such terms. The term is

∑
i E[Y 4

i ].

• Terms of type Y 2
i Y

2
j : There are

(
n
2

)
pairs {i, j}, and the coefficient for

each is
(
4
2

)
= 6. The term is 6

∑
i<j E[Y 2

i ]E[Y 2
j ].

So, E[(X − µ)4] =
∑n

i=1 E[Y 4
i ] + 6

∑
i<j E[Y 2

i ]E[Y 2
j ]. Let’s bound these expec-

tations. Since Xi ∈ {0, 1}, Xk
i = Xi for k ≥ 1. E[Y 2

i ] = E[(Xi−pi)
2] = E[X2

i −
2piXi+p2i ] = pi−2p2i +p2i = pi−p2i = pi(1−pi) ≤ pi. E[Y 4

i ] = E[(Xi−pi)
4] =

pi(1 − pi)
4 + (1 − pi)(−pi)4 = pi(1 − pi)

4 + (1 − pi)p
4
i . Since (1 − pi) ≤ 1 and

pi ≤ 1, we have E[Y 4
i ] ≤ pi(1−pi)+p2i (1−pi) ≤ pi. So,

∑
i E[Y 4

i ] ≤
∑

i pi = µ.
And 6

∑
i<j E[Y 2

i ]E[Y 2
j ] = 6

∑
i<j pi(1− pi)pj(1− pj) ≤ 6

∑
i<j pipj . We know

that 2
∑

i<j pipj = (
∑

i pi)
2 −

∑
i p

2
i ≤ (

∑
i pi)

2 = µ2. So, 6
∑

i<j pipj ≤ 3µ2.
Putting it all together:

E[(X − µ)4] ≤ µ+ 3µ2

Finally, substituting this back into the Markov inequality expression gives the
desired result:

P [X − µ ≥ β] ≤ µ+ 3µ2

β4
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