



































































































































Let
K wise independence and Hashing

Recall we defined pairwise independence

and showed how to construct

n pairwise independ bits 20,1 aus

from O n time random bits

We will initially focus on pairwise

independent setting and now think

about generating a pairwise indep

landon variables but from the

large 2011,2 m 1 m

instead of just bits






































































































































Df Xi X2 Xn f m are

pairwise independent it

i Xi is uniformly distributed

over m ic n

i it e n Pe Xi e andXj s

1,5 G m

Suppose m 2ʰ Then we can

use previous bit scheme for each

of the h bits This would

require Ohlen 0 lamlon
bits and is not that efficient

We will be a way
to get

Ollon Lam bits






































































































































We consider
the selling n m

and achieve a a good scheme

when n in p where p is

a prime
number

We recall some facts about

pline numbers

Lemma Zp 2011,2 p 13 Jun a

field and and mod p






































































































































Corollary Suppose i j i jEZp
Then for any r s E Zp unisue

all that satisfy the equations

a i b a wool p

aj b S mod p

Prost we solve these
equation for

a b as we do over reals since

Zp is a field
ali j r s

9 5 exists
Since its a

Fj and
unique in

Zp
Then b ai e

or aj s






































































































































Constending pairwise independent

random variables Xo Xx Xp 1

with large 2011,2 p 13

1 Pick a b C Zp independently

2 For each i set

Xi ait b mod p

Claim Xi uniformly
distributed

over Zp

Proof Fix a Then ai is fixed

Since b is uniformly random

in Zp crit b will be unifols

random in ZP
D






































































































































Claim to it Xi and

are pain wise
independent

Pe Xi a and Xj s

unique a b C Zp 5.1

ait b r it

aj b s

Pe Xi and Xj s

D

Amount of randomness required
is 2 losp to 0 Lgn






































































































































If one notices the preceding

Construction we only used the

fact that Zp is a field

Thus we could have done the

Same construction over any

finite field An important

result in algebra is

theorem If IF is a finite field

than F pk to some prime p

and integer 31 More oven for

every prime p
and inter k there

is a finite field of order pk
















































and all finite fields of the

Same order are isomorphic

Note that and in

a finite field of order

need to be defined
and our needs

to handle the computational
aspects

For our purposes
we will treat

then as 011 time operations

The advantage of using fields of

Size pk is that we can use p 2

and any integer
k Powers of 2

are natural for CS



Thus we can obtain n pairwise

independent random variables
over

n when n is

Suppose we want in Ln

Say m is also a power of
2

2h Then we can generate

n us over I 2h and

drop the fiest l L
bits

It is easy
exercise to argue that

this works

n Lm is easy Since
we can

generate in us and not use

m n of them



Ie independence

Df Xi Xn Xn C m are

K wise independent if

i Xi it n ate uniformly distributed

over m

Ii Any k of the given random

variables are independent

One can generalize the construction

for kin to larger K via polynomials

Id IF be a finite field of order

N

Pick ao as as an Elf uniformly

and independent from IF



Consider polynomial

p x Got a aft ay k

Now each

Xi p i

So we need to pick
K s so

total of 01k loan bits

Why does the construction work

Suppose is in ik are diet
elements of the field Let ji is Jic

be arbitrons elements of the field

We claim p ii I
is satisfied by

plan in a unique

plik je
degree d polynomial



First 7 a degree K 1 polynomial

Ry Lagrange interpulation

Consider
k

in
CI

satisfies the condition

Suppose we have two such polynomials

p and q Then

consider p q This has k non trivial

hoots which is not possible

D



Hashing and Hash Tables

Dictionary data structure
is

perhaps the most basic and important

data steacture in programming

Wante to store and retrieve a

bunch of key value pairs

where keys are assumed
to be

distinct and come from some

bagge universe U of objects Say

IUI N
However at any

time we only

have a small subset n of

keep in our data structure



Operations

insect 1 519 add to stored set

find x is in set

delete x remove fun set it

it is



fine everything in a compute can be

represented as a string we can

assume whos that U is ordered

Typically we deal with U being

numbers but in practice U can

be complex objects such as images

tuples of steing etc

Dictionaries over an ordered universe

U can be implemented
via pointer

based tiers data structures

1 495 comparisons of unwieldy
objects

Pointer based data studies can be
bad for many access



for many

Hashing

Use allays tables to memory access is
better

hash functions allow mapping

lay unwieldy objects
to small

integers

can get 011
on average

If
U a finite universe of size N

h U K is a hash function

Let Hall be the set of all

hash function from U k



It Hall is a family of hash

function

Hashing

1 Fix some family of nice hash

function It Hall
2 Pick a landon h E H

3 Let S E U where stun

4 map each XES to

h x

Assumption we have an array of

s.pk
hash

1I



maps to location h x

goal is to store
in location h x

But what it h x hly for some

X y Collision

Hashing data studies differ

in how they handle collisions

We will see him ideas



Hash tables with chaining

U universe with N elements

We will assume that we want to

store a set S U where Is n

and we know n Hence we

can allocate space
roughly O n

If we don't know n we can

guess and
double and rebuild

Given knowledge of n it is

common to set up table size
K

to be Cn for some small
constant

and then pick a hash family
It of functions that map

U to k a N k



In chaining all elements hashed

to a bucket index it K

are stored in a linked list

associated with i

We hope that the
hash function

spreads the items
nicely and that

the lists at each bucket we

small on average

Oberation each of the operation

insert x find x delete x take

time proportional to
the 111 31



where l x is the 8 list of elements

stored at h x

What is a good hash function

Suppose we have 5 of n elements

And a hash table of size n n

Then if we choose Hall
as our

family and pick h E Hall at
random

then it is like balls and bins

h X for any will be uniformly

distributed and x y E S

X y hlx and hly will be

independent



We will call Hall ideal hash

family and a random ha as

ideal hash function
The problem is that Hall is a very

large and complex family and

a landom h has no standine so

Computing h x is not efficient

So what we want are hash

functions families that
have the

following features

1 a every
h E H must be

efficiently computable

i sampling a random h fam H
should be efficient



should eff

lini a random h from H should

behave as closely as possible to

an ideal hash function

Deft A hash family It from

N k is strongly 2 universal

it the following
properties hold for

a random he chosen from It

1 c U hlx is uniformly

distributed our K

ii x y EU Xty

h x and hly are independent

a Pe hlx i hly j
halt



We now define a weaker belsion

Df A hash family it is

2 universal it a gtU Xty

Pe hex hly
hult

Donation A strongly universal

hash family is also universal

Suppose we had a universal hash

family

Lemma Let S U with Iskn
Fix EU Suppose h is chosen



from a universal hash family It

U k Let Sx be the

landon set y h x y

Then E 15 1 1 7

Proof Fix y ES y x

Let Dy be
indicator that hly1

46

151 D

E 15 1
H E

E Dy

It D

Corollary For any sequence of
n

operation starting from an empty

set the expected cost of the



operation is O n 1 1
If k r n Then expected cost

is Olu

How do we construct strongly

universal and universal hash families

We already did when constructing

pairwise independent
random

variables

Say we create Xo Xr Xn 1

pairwise independent rus with

range K Then we think of

Xi as h i



Torpeat
Let N 21 for some l

and k 2ʰ for some hill

Consider field IF of size 21
associate It with N

H ha la b c IF

ha b i aitb

For it if a b chosen independent

and at random

ha b i and ha b j are

independent and identically



distributed over N We can

then kincate the bits to get

distribution over k

Uversal Family

Although the preceding construction

works there is a simple family

that yields a universal family

Let p be a prime
N

Define H 2 ha at 21 p 13

be Zp

ha b i a i b mod P mod k



Claim It is a universal hash

family

Note diff with
strongly universal

family We did not all a to

be 0 This avoids the
not so

good interesting
hash function

ho which maps all elements

to 0 Second by taking a

simple mod
k we lose uniformity

property Nevertheless the family is

universal and is quite simple to

describe and implement Can who

use standard arithmetic on Zp



Sketch of universality

Lemma Fix i j i j a s

G Zp

Exactly one pain
a b a to a bEZp

St aitb
rajtb.rs

Proof a If und p

b r ai modp
1

If it j then aitb ajtb map

if ato

no collisions before folding



Think of ha b i as him step process

a aitb mod p

r a mod k

If itj a s

but a can be equal to
s

Lemma a pains
r s E Zp Zp

IS such that a modk S mod k

is PIII
fixed

Proof For any of s such

that a mod k S mod k

E but this
includes

So total is P TFT 1 since we dont



want to count re pain

p p 1
Tn

D

Fixing i j random a b ato
a bEZp

creates a random pair 9,5 EZpxZp

rts Total of p p 1 pain

Pains ris the s 1 rs that collide

after folding Pth
Hence habli ha j In



HashTables Linear Pulsing

Chaining is simple and easy to

analyze In terms of practice

using linked lists and dynamic

memory allocation
is not so

great There are other hashing

techniques such as linear tubing

and cuckoo hashing that try
to

take advantage of arrays

Lean farting is a technique

that handles collisions by

Scanning along the away
A it

hlx is occupied

See Kents notes for description


