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Johnson Lindenshauss Lemma and

Tisionatreduction
Fundamental Jetsimple result
from convex geometry

that has

found many
applications in data

analysis and algorithms

Let V T In be n vectors prints

in Rd where d is say large

The lemma says that
one can

project these
rectors to a lower

dimensional space RK to create



new vectors w̅ I In such

that i jE n

1 e 11Vi Vill Hui Ujll e Hui Vill

ie the pairwise Euclidean
distance

is approximately preserved
And

k 0 Lt
Thus d does not show up

clearly this is useful only if I

was originally layer
than k

Further the projection
is via a linear

map A E RK that is randomized

and oblivious to the data



The core of the result is about
a

Single vector and
we then use a

union bound

Dlibutional It Lemma
Fix a vector x ̅ Rd Let.TT be a

Kx d matrix where Taj is chosen
independently go from a stand

Gaussian distribution N
0,1

It k or log f then with

probability 1 8

G e 11 1 11 7 11 He 11 112



Assuming the DJL the dimensionality

reduction is easy

choose k v2 Elon
Then is look at vector x ̅ vi 5

With probability 1 42

tell.ITVi Trill io
is within

E of Avi vill

to by union bound
all pain are

preserved with pub 1 1
So w̅ IT Vi

Oblivious since IT was chosen without



Considering the data T T in

can be used for future data

Poff the IL La
Relies on some nice properties of

the Gaussian distribution One can

use other distributions and
there are

some advantages to do so but

analysis is more involved

Sum of Independent
Normally distributed

FandomVables

Recall N 4,52 is wound with mean µ
and variance Hx é t



Lemma Suppose Z N Mi T2

and Z N Kr T and Z Z are

independent Then

Z TZ N N Mtk Fr

Corollary Suppose E Z Z ZA is a

a vector of independent N 0,1

random variables Let x ̅ end
and 11 11 1 ie a unit vector

Then xi Zi is distributed
it

as N 0,1

variance is Xi I

Prof
since x ̅ is a unit vector D



Proof of Lemma

We will consider the moment

generating function of N 4,52
Suppose X N 4,02

What is E eᵗX
et ax

I

intimate
dx

ett It
1 12

Thus MGF is e

Suppose we have k independent



random variables Xi Xs Xk
with distribution D Dv Dk

If M E M t Mal t are

the moment generating functions of
Xi Xu Xp then the
momentgenerating function of

ΣXi is

M t M t M t Malt

because

Elet Eletti
it

If Xi X Xe are N Mi T2

N Mk T2
then

M f e
titi which is

the MLF a N Epi 20,2



Let IT be x kxd Gaussian matrix

and let x ̅ be a unit vector whos

Let y IT x ̅ y Yi Yu Ya

where Yi N o 1

and Yi Y Y are independent

What is 11511

4
i l

Hence E 11911 ELE Yet K

Thus E 1911 1



Our goal is to prove that

Y Σ Yi is concentrated
1 1

Note that Yi N 0,1 and

hence Y is the square

The distribution of the square of

a Normal distribution
is called

the X distribution and
is

important in statistics

The distribution of the sum of

squares of t
independent N 10,1

random variables
is called the

X distribution with parameter
t

X t

bulron



It is known that the X'distribution

with parameter t has exponential

tails

La Let Yi Yu Via be

independent N 0,1 random
variables

and let Y Y
i l

Then for E Cost

Pe Ci ask Y Hei

7 1 2éCE
K

where c is an absolute constant

The preceding concentration lemma

implies the DTL lemma



mp

By choosing k Elen's
Pef e ftp.txll cites s t s

Toothteconcentration lemma

We will follow the exponential
moment method For t 30

Pe Y α Pe E E



The difficultpart is
understand

E et

It him out that for X k there

is a nice closed form for t c lost

E et 1 2
5142 Not defined

for t it

Then we can plug it in

Pe α 1
255 5ᵗʰ

as long as tt o t



choose t 1 E
Pe Exa 7s
For α HEPK

He
LET

ék GE1
bulite

In 1 9 E Et EE

K e e

e

KEE
e

Lower tail is similar



How do we get the closed focus

for etY
Recall 4 Yi

Yi are independent
and

each Y N 0,1

Hence MLF of
Yi

E etti
N

fett e

E a

dy

Eta Eta dy

2



IF.EE.ie a

2
i 215

Since Y Yi and independed

i 1 identical

Mar 14 C EFE
13



New Topic

Hasting

Requires some background in

pseudo randomness deodorization

How do we convert randomized

algorithms into deterministic
algorithm

Is it always possible

We will discuss some of
these

later but our goal today
is to

introduce the notion of bed
independence



Definition A set of random variables

Xi Xn Xn are pairwise incendent

or 2 wise independent if

Xi and Xj are independent

for any
i j

EI Xi Xn X C 20113

X1 X independent with

pub of 0 1

3 X X

X X2 X are pairwise indep
but

not independent



Pairwise independence Suffices in

Some applications

Can generate many pairwise
indep

random bits from a small of

independent random bits

Lemma Can construct n 2 1

pairwise independent
random variables

Xi Xn Xn where each Xic
20,13

tofirm K random bolts Y Y tk

Construction Let S be a non empts

Subset of 21,4 lk

define Xs Yi



If SFT Xs and Xt are

independent

Case S T 0 s

Say i E S T

For any choice of
bits in T

the value of Xs is equally likely

to be 0 or 1

Case T S 0 same as above

It SAT either S T to a T 5 0

D



Apation
Deandomizing Max let all
Recall G U E want to

find Max cut

1 52 0
2 For each V E U

add v to S with pub

Recall analysis

Xv indicator for VES

Ye indicator f edge e being cut

i e t S s

P Ye 1



For edge e uv

This only requires Xu and Xu
to

be independent

Y Ye and we used

e

linearity of expectation
to claim

E Y m

So if Xu UF V are pairwise

independent

Y Im still holds

If we have n vertices we

can use above construction to

generati n pairwise random bits



from log n 17 time random bits

phishing of length lentil
O n

Try each such bit string generate

n pairwise
random bits and

run all on each of these
and

take the best

A deterministic algorithm


