
Lecture 6

Transcribed from notes dated 9/11/2021

Johnson-Lindenstrauss Lemma and Dimensionality Reduction

A fundamental yet simple result from convex geometry that has found many applications in data analysis
and algorithms.

Let v1, v2, . . . , vn be n vectors (points) in Rd where d is very large. The lemma says that one can project
these vectors to a lower dimensional space Rk to create new vectors u1, u2, . . . , un such that for all i, j ∈ [n]:

(1− ε)‖vi − vj‖2 ≤ ‖ui − uj‖2 ≤ (1 + ε)‖vi − vj‖2

i.e. the pairwise Euclidean distance is approximately preserved. And:

k = O

(
log n

ε2

)
Note that d does not show up.

Clearly this is useful only if d was originally larger than k.
Further the projection is via a linear map Rk×d that is randomized and oblivious to the data.
The core of the result is about a single vector and we then use a union bound.

Distributional JL Lemma

Fix a vector x ∈ Rd. Let Π be a k× d matrix where Πi,j is chosen independently from a standard Gaussian
distribution N(0, 1).

If k = Ω
(

1
ε2 log 1

δ

)
then with probability ≥ 1− δ:

(1− ε)‖x‖2 ≤
∥∥∥∥ 1√

k
Πx

∥∥∥∥
2

≤ (1 + ε)‖x‖2

Assuming the DJL the dimensionality reduction is easy.
Choose k = Ω( 1

ε2 log n). Then for i 6= j look at vector x = vi − vj . With probability 1 − 1
n3 ,∥∥∥ 1√

k
(Πvi −Πvj)

∥∥∥
2

is within (1± ε)‖vi − vj‖2. Let ui = 1√
k

Πvi.

So by union bound all pairs are preserved with probability 1−
(
n
2

)
1
n3 ≥ 1− 1

n .
The projection is oblivious since Π was chosen without considering the data v1, . . . , vn. This implies it

can be used for ”future” data.

Proof of the DJL Lemma

The proof relies on some nice properties of the Gaussian distribution. One can use other distributions, and
there are some advantages to do so, but the analysis is more involved.

Sum of Independent Normally Distributed Random Variables

Recall N(µ, σ2) is the normal distribution with mean µ and variance σ2. Its probability density function is:

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2

1



Lemma 1. If Z1 ∼ N(µ1, σ
2
1) and Z2 ∼ N(µ2, σ

2
2) and Z1, Z2 are independent, then Z1 + Z2 ∼ N(µ1 +

µ2, σ
2
1 + σ2

2).

Corollary 1. Suppose ~z = (z1, z2, . . . , zd) is a vector of independent N(0, 1) random variables. Let x ∈ Rd

be a unit vector, i.e., ‖x‖2 = 1. Then
∑d
i=1 xizi is distributed as N(0, 1).

Proof. The sum is a sum of independent Normal variables, as each xizi ∼ N(0, x2i ). The mean is
∑d
i=1E[xizi] =∑d

i=1 xiE[zi] = 0. The variance is
∑d
i=1 Var(xizi) =

∑d
i=1 x

2
iVar(zi) =

∑d
i=1 x

2
i = 1, since x is a unit vec-

tor.

Proof of Lemma (via Moment Generating Functions)

We will consider the moment generating function (MGF) of X ∼ N(µ, σ2), which is E[etX ].

E[etX ] =

∫ ∞
−∞

etx
e−

(x−µ)2

2σ2

√
2πσ2

dx

This evaluates to:

E[etX ] = eµt+
σ2t2

2

Suppose we have k independent random variables X1, X2, . . . , Xk. If M1(t), . . . ,Mk(t) are their respective
MGFs, then the MGF of their sum X =

∑
Xi is:

M(t) = M1(t)M2(t) . . .Mk(t)

This is because E[etX ] = E[et
∑
Xi ] = E

[∏k
i=1 e

tXi
]

=
∏k
i=1E[etXi ] by independence. If Xi ∼ N(µi, σ

2
i ),

then the MGF for the sum is:

M(t) =

k∏
i=1

eµit+
σ2i t

2

2 = e(
∑
i µi)t+

(
∑
i σ

2
i )t

2

2

This is the MGF of N(
∑
µi,
∑
σ2
i ).

Main Proof of DJL

Let Π be a k × d Gaussian matrix and let x be a unit vector (wlog). Let y = Πx = (Y1, Y2, . . . , Yk). From

the corollary, each Yi =
∑d
j=1 Πijxj is distributed as Yi ∼ N(0, 1), and the Yi are independent. We are

interested in the squared norm ‖y‖22 =
∑k
i=1 Y

2
i . The expectation is E[‖y‖22] =

∑k
i=1E[Y 2

i ] = k, since
E[Y 2

i ] = Var(Yi) + (E[Yi])
2 = 1 + 0 = 1. This suggests that 1√

k
‖Πx‖2 should be close to 1.

Our goal is to prove that Y =
∑k
i=1 Y

2
i is concentrated around its mean. The distribution of the sum

of squares of t independent N(0, 1) random variables is called the χ2 distribution with parameter t, denoted
χ2(t).

Lemma 2 (Concentration for χ2). Let Y1, . . . , Yk be independent N(0, 1) random variables and let Y =∑k
i=1 Y

2
i . Then for ε ∈ (0, 1/2):

Pr[(1− ε)2k ≤ Y ≤ (1 + ε)2k] ≥ 1− 2e−cε
2k

where c is an absolute constant.

This concentration lemma implies the DJL lemma. By choosing k = O( 1
ε2 ln 1

δ ), we get Pr[(1 − ε) ≤∥∥∥ 1√
k

Πx
∥∥∥
2
≤ (1 + ε)] ≥ 1− δ.
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Proof of the Concentration Lemma

We use the exponential moment method (Chernoff bound). For t ≥ 0:

Pr[Y > α] = Pr[etY > etα] ≤ E[etY ]

etα

The MGF for Y ∼ χ2(k) has a closed form for t < 1/2:

E[etY ] = (1− 2t)−k/2

Plugging this in, we get Pr[Y > α] ≤ (1 − 2t)−k/2e−tα. Optimizing for t and setting α = (1 + ε)2k gives a

bound of the form e−c
′ε2k. The lower tail is similar.

To derive the MGF for Y 2
i where Yi ∼ N(0, 1):

MY 2
i

(t) = E[etY
2
i ] =

∫ ∞
−∞

ety
2 e−y

2/2

√
2π

dy =

∫ ∞
−∞

1√
2π
e−

y2

2 (1−2t)dy

This integral evaluates to (1− 2t)−1/2. Since the Y 2
i are independent, the MGF of their sum Y =

∑
Y 2
i is

the product of their individual MGFs:

MGF (Y ) =

k∏
i=1

(1− 2t)−1/2 = (1− 2t)−k/2

New Topic: Hashing

This topic requires some background in pseudo-randomness and derandomization. A key question is how to
convert randomized algorithms into deterministic ones. Our goal today is to introduce the notion of limited
independence.

Definition: A set of random variables X1, . . . , Xn are pairwise independent (or 2-wise independent)
if Xi and Xj are independent for any i 6= j.

Example: Let X1, X2 ∈ {0, 1} be independent random bits. Let X3 = X1⊕X2 (XOR). Then X1, X2, X3

are pairwise independent but not fully (mutually) independent.

Lemma 3. One can construct n = 2k − 1 pairwise independent random variables X1, . . . , Xn (where each
Xi ∈ {0, 1}) from just k truly random bits Y1, . . . , Yk.

Construction: Let S be any non-empty subset of {1, 2, . . . , k}. Define XS =
⊕

i∈S Yi. For any two
distinct non-empty subsets S and T , the variables XS and XT are independent.

Application: Derandomizing the Max-Cut algorithm

Recall the simple randomized algorithm for Max-Cut on a graph G = (V,E): for each vertex v ∈ V , assign it
to a set S with probability 1/2. The expected number of edges in the cut is |E|/2. The analysis for any given
edge e = (u, v) only requires that the random choices for u and v are independent. Therefore, the linearity
of expectation argument holds even if the random variables for all vertices are only pairwise independent.

We can derandomize this as follows:

• We need n = |V | pairwise independent random bits. We can generate these from a ”seed” of k =
dlog2(n+ 1)e true random bits using the construction above.

• The number of possible seeds is 2k, which is O(n).

• A deterministic algorithm can iterate through all O(n) possible seeds. For each seed, it generates the
n bits, defines the corresponding cut, and computes its size.

• The algorithm then outputs the largest cut found. Since the expected size is |E|/2, at least one of
these deterministic outcomes must produce a cut of size at least |E|/2. This yields a deterministic
polynomial-time approximation algorithm.
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