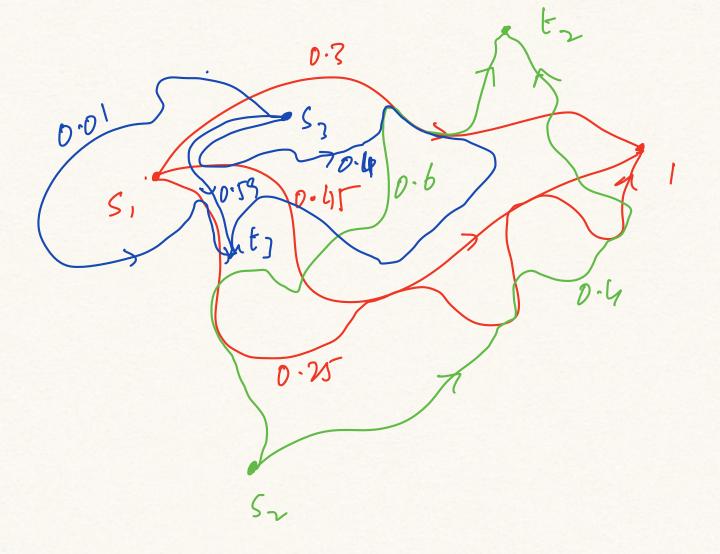
Ledine 5 Continue Cherroff-Hoeffeling Rounds An Application to Louling to Congestion Minimization A classical publish from both there and practice. Criven G=(V,E) a directed glaph ld. (s,,t,), (s,,t,),.., (sk,tk) be K Some-Sich paiss. The Edge-Disjoint-Nathers (EDI) publishers ash the fllowing: can we find poetles P., Pr, ..., Pk such that (i) Pi is an Si-ti path (ii) Pr, Pr, ..., Pk are edge-disjoint A fundamental last difficult problem. We will consider a relaxation. Given a and the pains find the pathes Pi,..., Pic Such Khat no elge is used in too many poths. We write an IP relaxation Let Pi la tre Cet-9 all si-sti paths - an exponential set.

min λ $\sum_{p \in \mathbb{Z}_{i}} x_{p} = 1 \quad \forall i \in \mathbb{Z}_{i}$ $\sum_{i=1}^{k} \sum_{\substack{p \in \mathbb{P}_{i} \\ p \neq e}} x_{p} \leq \lambda \quad \forall e \in \mathbb{E}$ $\chi_{p \geq 0} \quad \uparrow \in \mathcal{U}_{i}^{p}.$

We will not discuss how to bloe
the above It but it can be done
via the Ellipsoid method or by
writing a different edge-flow based
from alion that I write below
where X(e,i) is the flow on edge
e for pair i.

min $Z \times (e,i) - Z \times (e,i) = 1$ $e \in S^+(S_i)$ $e \in S^-(S_i)$ Hi (Clic) V+ 2si, hi? $Z \times le) - Z \times lel = 0$ $ef\{t(v) = ef\{t(v)\}$ if [k]. HeGE Ž xle,i) ≤ λ i=1 ec-E, i & ErJ. x(e,i)7,0 Let 2* be the optimum value of the Il relaxation. Note Heat 7* can be hnaller Han 1 & the true board is max 21,2x3. Can we cowert the fractional solution to an integral solution with small

Confestion.



Rounding:

1. Solve II whereation

2. For each pair (Si, ti) independently

pich a path p. E. Pi where

p is chosen with publishity xp.

Raghavan-Thompson were the field. to do this evending and analyze via Cherry bounds in 1987

Theren: The algorithm outputs a set of handom pather P., -., Mc Such that $\forall i \in E(i)$ Pi is an Si->1-i path. And with publishing 7, 1- $\frac{1}{\forall dy(m)}$ the load on any eyes is at most Ollem) max 2 2t, 17.

Consider any elge e. lost: Yi he the indicator for Pi, the path closen for (Si, I-i) using e. Y= \(\frac{k}{2} \) \(\frac{k}{i} \) \(\frac{i}{2} \) The Hotal $P_{\mathcal{Q}}[Y_i=i] = \chi(e,i)$ flow on e for Commodity i = \(\int \text{Xp} \).

p(-3i)

p3e Why? V, V2, -., Vx are independent. E[Y]= ZE[Yi]= Z xli,e)=1

Hence by Clernff bound $P_{\lambda}\left(Y>, c\frac{lg(m)}{lgls(m)}\right) \leq \frac{1}{m^{c'}}$ to for Efficiently laye constants c and c'. Nen we apply union bound over all the edges and Since we have m edges that Palload on any cely e >, £ m. $\frac{1}{C'}$

Exercise: You can use therright bounds to prove two related bounds (i) 3 c, c' suther that for & E(0,1). Per (1+E) 2+ clam] = I Thus when $\lambda = \Omega(lgm)$ we get a very good approximation. (ii) When 2+>, clam true Pal'Y>, n* + Volskat Je ko' Note the precedity bound has no multiplicative factor on 2*.

Additive Cherry Bound To motivate this bound consider the landom walk on the line
We had $Y = \sum_{i=1}^{n} X_i$ Where Xi E {-1, 1} and E[Xi]=0 and hence E[Y]=0. In this Edting we cannot expect a multiplicative Merry bound. We will state a general bound that bandles This kind of Sellings

Holffdig Round: Where $Ld-X=\sum_{i=1}^{n}X_{i}$ (i) Xi are i'ndependent Hi E [n] (ii) Xi (- [ai, bi] Yi E [n] (iii) E[Xi]=0 - 22 (bi-ai)² Nun, fr 20 o Pe [X > 2] = $e^{-\frac{\chi^2}{2\xi(b_i-a_i)^2}}$ and for NLD AL [XEY] = Comments: Suppose Xi G [-1,1] (i) Men [li-ai] = 4n. (ii) Why assume E[Xi]=0. We Can replace Xi by. Yi= Xi- E[Xi]

and [[Yi]=0 and if Xi [-[aisbi] Hun Yi G-[ai-E[xi], bi-E[xi]] and hence the lever (bi-ai) does not Change. =) without assuming [[Xi]=0 coe have $\int_{\mathbb{R}} \left[X - \left[\sum_{i=1}^{\infty} X \right] >_{i} t \right] \leq e^{-\frac{t^{2}}{2 \frac{\lambda^{2}}{2} \left(k_{i} - a_{i} \right)}}$ which is The Standard from. Proof: As before we bounder et X pr a parameter to 70 Pa[X>Y] = Pa[ex = ex] E[e^{t-X}] by Madder.

So it boil door to estimating/upper bounding [[e=1] = T] E[e^tXi] i=1 and choosing the best t. How do we bound e We will only sketch the agament. et y is a convex function in the interval [ai, bi] (over the entire & real hue). We know E[Xi]=0 and Xi & [ai, bi] What is the distribution that maximizes e this fince that is what gives us the weaked bound?

Due to convexity it liver out that we should put all the perhalitits nas on The extremes of the interval [aisti]. La the west can is when Xi E Lai, bi) Subject to E[Xi]=0 mte ai =0 and bizo. Say X_i is b_i with $p = \frac{-a}{b-a}$ and ai with jub 1-p= $\frac{b}{b-a}$. Due can pure abore by convexity. Aguning above [[e | Xi] = pe + (1-p)e

Amening above we have

$$E[e^{t}X] = e^{\frac{t^{2}}{2}} \sum_{i=1}^{n} (b_{i}-a_{i})^{2}$$
Thus $P_{i}[X>, v] \in eE[e^{t}X]$

$$= \frac{t^{2}Zb_{i}-a_{i}}{e^{t}N}$$

$$= e^{\frac{t^{2}}{2}} \frac{Zb_{i}-a_{i}}{e^{t}N} - t^{n}$$

$$= e^{\frac{t^{2}}{2}} \frac{Zb_{i}-a_{i}}{e^{t}N} - t^{n}$$

minimizing over t we have $\frac{t}{4} \sum_{i=1}^{\infty} (b_i - a_i)^2 = n$ $\frac{t}{4} = \frac{4n}{3!b_i - a_i}$ $\frac{t}{5!b_i - a_i}$

$$= \frac{16 n^{2}}{8 \sum_{i}^{1} (b_{i} - a_{i})^{2}} - \frac{4n^{2}}{\sum_{i}^{1} (b_{i} - a_{i})^{2}}$$

$$= -2\eta^2$$

$$\frac{2(bi-ai)^2}{i=1}$$

Thus
$$\int_{\mathbb{R}} \left[X > \mathcal{N} \right] \leq e^{-\frac{2\mathcal{N}^2}{\frac{2}{5}(L_{i}-a_{i})^2}}.$$

Prose Lover Tail is finilar.

Application Kandom Walh The $X = \sum_{i=1}^{m} X_i$ Xi [- 1-1,1] E[Xi]=0 bi= | ai = -1 Pa [X>1-Vn] = = +2n = - 15

Similarly Pa[XZ tVn] = e .

