Lecture 5

Continue Chernoff-Hoeffding Bounds

An Application to Routing for Congestion Minimization

A classical problem from both theory and practice.
Given G = (V, E) a directed graph. Let (s1,t1), (s2,t2),..., (Sk,tx) be source-sink pairs.

The Edge-Disjoint-Paths (EDP) problem
asks the following: Can we find paths P;, Ps, ..., P; such that
(i) P;is an s; — t; path
(ii) Py,..., Py are edge-disjoint
A fundamental but difficult problem. We will consider a relaxation.

Given G and the pairs, find the paths such that no edge is used in too many paths.

We write an LP relaxation

Let P; be the set of all s; — t; paths - an exponential set.

min A\
s.t. Z xp =1 Vi € [k]
pEP;
Z Tp <A Vee E
pePi,pde
rp, >0 pE Upi

We will not discuss how to solve the above LP but it can be done via the Ellipsoid method or by
writing a different edge-flow based formulation that I write below where z(e, %) is the flow on edge e for
pair 4.

min A
s.t. Z x(e, i) — Z x(e,i) =1 Vi € [k]
e€dt(s;) ecd—(si)
S oalei)— Y a(ei)=0 Vo ¢ {s;,t;},Vi € [k]
ecot(v) e€d (v)
k
Zx(e,i)g)\ Vee I/
i=1
z(e,i) >0 e€ E,i€[k]

Let A\* be the optimum value of the LP relaxation. Note that A* can be smaller than 1. The true
lower bound is max{\*, 1}.

Can we convert the fractional solution to an integral solution with small ”congestion”?



Rounding
1. Solve LP relaxation.
2. For each pair (s;,t;) independently pick a path P; where p; is chosen with probability Zp, .
Raghavan-Thompson were the first to do this rounding and analyze via Chernoff bounds in 1987.

Theorem. The algorithm outputs a set of random paths Py, ..., Py such that Vi € [k], P; is an s; — t;

path. And with probability 1 — the load on any edge is at most O(log’ig’m) max{\*,1}.

1
poly(m)

Proof Sketch: Consider any edge e. Let Y; be the indicator for P;, the path chosen for (s;,t;), using
k
e. Let Y =3 | V.

PlY;,=1]= Z xp = x(e, ) the total flow on e for commodity i.
pEP;i,pde

Why? Yi,...,Y, are independent.

ElY] =) E[Y]= Zm(e, i) <A

i=1
Hence by Chernoff bound, then
1 1
PT[Y > CM] < -
loglog(m) me

for sufficiently large constants ¢ and ¢/. We apply union bound over all the m edges and we have the

load on any edge
1

mc’ — mc’ —1

. S m - -m
Exercise: You can use Chernoff bounds to prove two related bounds

(i) Show that for e € (0,1), P.[Y > (1 4+ e)A* + CIZ#] < # Thus when \* = Q(logm) we get a
very good approximation.

(ii) when A* > clogm, P.[Y > A*++/clogmA*] < mlc, . Note the preceding bound has a multiplicative
factor on A\*.

Additive Chernoff Bound

To motivate this bound consider the random walk on the line. We had Y = """ | X, where X; € {—1,1}
and F[X;] = 0 and hence E[Y] = 0. In this setting we cannot expect a multiplicative bound. We will
state a general bound that handles this kind of setting.

Hoeffding Bound

Let X =1 | X, where
(i) X; are independent
(i) X; € [ai,b;] Vi€ [n]
(i) E[X;] =0 Vi€ [n]

Then,
2
PT[X > 77] < 67221‘(1?1'*%)2
and
o
PT[X < —77] <e 23 (bj—a;)?
Comments:

(i) Suppose X; € [—1,1]. Then Y1 | (b; — a;)* = 4n.



(ii) Why assume E[X;] = 07 We can replace X; by Y; = X, — E[X;] and E[Y;] =0 and if X; € [a;, b;]
then Y; € [a; — F[X;],b; — E[X;]] and hence the term (b; — a;) does not change.

Without assuming F[] = 0 we have

+2

P [X —E[X] >t <e *Tim®i—a?
which is the standard form.

Proof Sketch: As before we consider e for a parameter t > 0.

E[etX]
etn

P. X >n] = P > e < by Markov
So it boils down to estimating/upper bounding E[e'X] = []!_, E[e’*i] and choosing the best ¢.

How do we bound E[e!*¢]? We will only sketch the argument. e is a convex function in the interval
[a;, b;] (on the entire real line). We know E[X;] = 0 and X; € [a;,b;]. What is the distribution that
maximizes F[e!Xi] since that is what gives us the weakest bound?

Due to convexity it turns out that we should put all the probability mass on the extremes of the
interval [a;, b;] (i.e. the Worst case is when X; € {a;,b;} subject to E[X;] = 0; note a; < 0 and b; > 0).
Say X; is b; with p = 3 —o and a; with prob1—p = b - One can prove above by convexity. Assuming
above,

Bl < pe“’?‘ + (1 —p)e'™

(completely obvious). By calculus we can show that this is < e 20uze)® il
Assuming above we have
E[etx] S e% Z?:l(bi*ai)Q
t 2 i —ay 2
Thus P[X > n] < Z] < ===t
Minimizing over t, we have
t n
72 (bi—a)?=
i=1
. 4n
Dlima (bi = a;)?
plugging in, the exponent is
t*2 9
3 Z(bi —a;)” —t'n
_ 1612 4n?
8(22(bi —ai)?)  3o(bi —ai)?

R
> i (bi — a;)?
Thus
2n2

P X >n <e TmaCi—ed?

Lower Tail is similar.

Application
Random Walk on the Line. X =" | X;, X; € {-1,1}, E[X;] =0. b; = 1,a; = —1.

< 67152/8

PX > tyn] <
PX <tyn] <e /8



