
Lecture 5

Continue Chernoff-Hoeffding Bounds

An Application to Routing for Congestion Minimization

A classical problem from both theory and practice.
Given G = (V,E) a directed graph. Let (s1, t1), (s2, t2), . . . , (sk, tk) be source-sink pairs.

The Edge-Disjoint-Paths (EDP) problem

asks the following: Can we find paths P1, P2, . . . , Pk such that

(i) Pi is an si − ti path

(ii) P1, . . . , Pk are edge-disjoint

A fundamental but difficult problem. We will consider a relaxation.
Given G and the pairs, find the paths such that no edge is used in too many paths.

We write an LP relaxation

Let Pi be the set of all si → ti paths - an exponential set.

min λ

s.t.
∑
p∈Pi

xp = 1 ∀i ∈ [k]

∑
p∈Pi,p∋e

xp ≤ λ ∀e ∈ E

xp ≥ 0 p ∈
⋃
i

Pi

We will not discuss how to solve the above LP but it can be done via the Ellipsoid method or by
writing a different edge-flow based formulation that I write below where x(e, i) is the flow on edge e for
pair i.

min λ

s.t.
∑

e∈δ+(si)

x(e, i)−
∑

e∈δ−(si)

x(e, i) = 1 ∀i ∈ [k]

∑
e∈δ+(v)

x(e, i)−
∑

e∈δ−(v)

x(e, i) = 0 ∀v /∈ {si, ti},∀i ∈ [k]

k∑
i=1

x(e, i) ≤ λ ∀e ∈ E

x(e, i) ≥ 0 e ∈ E, i ∈ [k]

Let λ∗ be the optimum value of the LP relaxation. Note that λ∗ can be smaller than 1. The true
lower bound is max{λ∗, 1}.

Can we convert the fractional solution to an integral solution with small ”congestion”?
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Rounding

1. Solve LP relaxation.

2. For each pair (si, ti) independently pick a path Pi where pi is chosen with probability x̄pi
.

Raghavan-Thompson were the first to do this rounding and analyze via Chernoff bounds in 1987.

Theorem. The algorithm outputs a set of random paths P1, . . . , Pk such that ∀i ∈ [k], Pi is an si − ti
path. And with probability 1− 1

poly(m) the load on any edge is at most O( logm
log logm )max{λ∗, 1}.

Proof Sketch: Consider any edge e. Let Yi be the indicator for Pi, the path chosen for (si, ti), using

e. Let Y =
∑k

i=1 Yi.

Pr[Yi = 1] =
∑

p∈Pi,p∋e

xp = x(e, i) the total flow on e for commodity i.

Why? Y1, . . . , Yk are independent.

E[Y ] =
∑

E[Yi] =

k∑
i=1

x(e, i) ≤ λ∗

Hence by Chernoff bound, then

Pr[Y ≥ c
log(m)

log log(m)
] ≤ 1

mc′

for sufficiently large constants c and c′. We apply union bound over all the m edges and we have the
load on any edge

· · · ≤ m · 1

mc′
≤ 1

mc′−1
·m

Exercise: You can use Chernoff bounds to prove two related bounds

(i) Show that for ϵ ∈ (0, 1), Pr[Y ≥ (1 + ϵ)λ∗ + c logm
ϵ2 ] ≤ 1

mc′ . Thus when λ∗ = Ω(logm) we get a
very good approximation.

(ii) when λ∗ ≥ c logm, Pr[Y > λ∗±
√
c logmλ∗] ≤ 1

mc′ . Note the preceding bound has a multiplicative
factor on λ∗.

Additive Chernoff Bound

To motivate this bound consider the random walk on the line. We had Y =
∑n

i=1 Xi where Xi ∈ {−1, 1}
and E[Xi] = 0 and hence E[Y ] = 0. In this setting we cannot expect a multiplicative bound. We will
state a general bound that handles this kind of setting.

Hoeffding Bound

Let X =
∑n

i=1 Xi where

(i) Xi are independent

(ii) Xi ∈ [ai, bi] ∀i ∈ [n]

(iii) E[Xi] = 0 ∀i ∈ [n]

Then,

Pr[X ≥ η] ≤ e
− η2

2
∑

i(bi−ai)
2

and

Pr[X ≤ −η] ≤ e
− η2

2
∑

i(bi−ai)
2

Comments:

(i) Suppose Xi ∈ [−1, 1]. Then
∑n

i=1(bi − ai)
2 = 4n.
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(ii) Why assume E[Xi] = 0? We can replace Xi by Yi = Xi − E[Xi] and E[Yi] = 0 and if Xi ∈ [ai, bi]
then Yi ∈ [ai − E[Xi], bi − E[Xi]] and hence the term (bi − ai) does not change.

Without assuming E[·] = 0 we have

Pr[X − E[X] ≥ t] ≤ e
− t2

2
∑n

i=1
(bi−ai)

2

which is the standard form.

Proof Sketch: As before we consider etX for a parameter t > 0.

Pr[X ≥ η] = Pr[e
tX ≥ etη] ≤ E[etX ]

etη
by Markov

So it boils down to estimating/upper bounding E[etX ] =
∏n

i=1 E[etXi ] and choosing the best t.
How do we bound E[etXi ]? We will only sketch the argument. ety is a convex function in the interval

[ai, bi] (on the entire real line). We know E[Xi] = 0 and Xi ∈ [ai, bi]. What is the distribution that
maximizes E[etXi ] since that is what gives us the weakest bound?

Due to convexity it turns out that we should put all the probability mass on the extremes of the
interval [ai, bi] (i.e. the worst case is when Xi ∈ {ai, bi} subject to E[Xi] = 0; note ai ≤ 0 and bi ≥ 0).
Say Xi is bi with p = −ai

bi−ai
and ai with prob 1−p = bi

bi−ai
. One can prove above by convexity. Assuming

above,
E[etXi ] ≤ petbi + (1− p)etai

(completely obvious). By calculus we can show that this is ≤ et
2 (bi−ai)

2

8 .
Assuming above we have

E[etX ] ≤ e
t2

8

∑n
i=1(bi−ai)

2

Thus Pr[X ≥ η] ≤ E[etX ]
etη ≤ e

t2
∑

(bi−ai)
2

8 −tη.
Minimizing over t, we have

t

4

n∑
i=1

(bi − ai)
2 = η

t∗ =
4η∑n

i=1(bi − ai)2

plugging in, the exponent is

t∗2

8

∑
(bi − ai)

2 − t∗η

=
16η2

8(
∑

(bi − ai)2)
− 4η2∑

(bi − ai)2

=− 2η2∑n
i=1(bi − ai)2

Thus

Pr[X ≥ η] ≤ e
− 2η2∑n

i=1
(bi−ai)

2

Lower Tail is similar.

Application

Random Walk on the Line. X =
∑n

i=1 Xi, Xi ∈ {−1, 1}, E[Xi] = 0. bi = 1, ai = −1.

Pr[X > t
√
n] ≤ e−

t2n
8n ≤ e−t2/8

Pr[X < t
√
n] ≤ e−t2/8
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