
Lecture 4: Probabilistic Inequalities

September 5, 2025

1 Markov’s Inequality

We have already seen Markov’s inequality.

Inequality 1 (Markov’s Inequality). Suppose X is a non-negative random variable. Then for any t > 0,

Pr[X ≥ t · E[X]] ≤ 1

t

Alternatively, for any α > 0,

Pr[X ≥ α] ≤ E[X]

α

Exercise 1. For any t ≥ 1, give an example of a random variable where Markov’s inequality is tight.

2 Variance

The expectation is the first moment and provides important information, but is often not sufficient to
do more sophisticated analysis. Now we will discuss the second moment, or the variance.

Definition 1 (Variance). The variance of a random variable X is defined as:

V ar(X) = E[(X − E[X])2]

The standard deviation is stdev(X) =
√

V ar(X).

An alternative and useful formula for variance is:

V ar(X) = E[X2]− (E[X])2

Example 1 (Binary Random Variable). Let X = 1 with probability p and X = 0 otherwise.

E[X] = p · 1 + (1− p) · 0 = p

E[X2] = p · 12 + (1− p) · 02 = p

V ar(X) = E[X2]− (E[X])2 = p− p2 = p(1− p)

Example 2. Let X = 1 with probability 1/2 and X = −1 with probability 1/2.

E[X] =
1

2
(1) +

1

2
(−1) = 0

E[X2] =
1

2
(12) +

1

2
((−1)2) = 1

V ar(X) = E[X2]− (E[X])2 = 1− 02 = 1

Example 3 (Geometric Random Variable). Let X be a geometric random variable with parameter p.
This represents the number of coin tosses to get the first head, where the probability of heads is p.

E[X] =
1

p

V ar(X) =
1− p

p2
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Example 4 (Poisson Random Variable). Let X be a Poisson random variable with parameter λ. The

probability distribution is Pr[X = i] = e−λ λi

i! .

E[X] = λ

V ar(X) = λ

Example 5 (Normal Distribution). For a normal distribution with probability density function f(x) =

1√
2πσ

e−
(x−µ)2

2σ2 :

E[X] = µ

V ar(X) = σ2

Lemma 1. If X1 and X2 are independent random variables, then V ar(X1+X2) = V ar(X1)+V ar(X2).

Proof Sketch. We know E[X1+X2] = E[X1]+E[X2]. The variance is V ar(X1+X2) = E[(X1+X2)
2]−

(E[X1 +X2])
2. Expanding the terms:

E[(X1 +X2)
2] = E[X2

1 + 2X1X2 +X2
2 ] = E[X2

1 ] + 2E[X1X2] + E[X2
2 ]

(E[X1 +X2])
2 = (E[X1] + E[X2])

2 = (E[X1])
2 + 2E[X1]E[X2] + (E[X2])

2

Because X1 and X2 are independent, E[X1X2] = E[X1]E[X2]. The result follows from algebra.

More generally, for a sum of n mutually independent random variables X =
∑n

i=1 Xi:

E[X] =

n∑
i=1

E[Xi] (by linearity of expectation)

V ar(X) =

n∑
i=1

V ar(Xi) (due to independence)

3 Chebyshev’s Inequality

Inequality 2 (Chebyshev’s Inequality). Suppose X is a random variable with variance σ2
X . Then for

any t > 0,

Pr[|X − E[X]| ≥ tσX ] ≤ 1

t2

Alternatively, for any γ > 0,

Pr[|X − E[X]| ≥ γ] ≤ σ2
X

γ2

Proof. Let Y = (X − E[X])2. By definition, E[Y ] = σ2
X . Y is a non-negative random variable. We can

apply Markov’s inequality to Y .

Pr[|X − E[X]| ≥ tσX ] = Pr[(X − E[X])2 ≥ t2σ2
X ]

= Pr[Y ≥ t2σ2
X ]

≤ E[Y ]

t2σ2
X

(by Markov’s inequality)

=
σ2
X

t2σ2
X

=
1

t2

4 Applications of Chebyshev’s Inequality

4.1 Variance Reduction

Suppose we have a randomized procedure that outputs a random variable X to estimate a quantity of
interest α, such that E[X] = α. This may not be adequate if V ar(X) is large.
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To improve the estimate, we can run the algorithm k times independently, obtaining estimates
X1, X2, . . . , Xk. The final estimate is the average:

X̂ =
1

k

k∑
i=1

Xi

The expectation remains correct:

E[X̂] = E

[
1

k

k∑
i=1

Xi

]
=

1

k

k∑
i=1

E[Xi] =
1

k
(kα) = α

The variance is reduced:

V ar(X̂) = V ar

(
1

k

k∑
i=1

Xi

)
=

1

k2

k∑
i=1

V ar(Xi) =
1

k2
(k · V ar(X)) =

V ar(X)

k

Repetition and averaging reduces variance.

4.2 Balls and Bins

Consider throwing m balls independently and uniformly at random into n bins. Let Yi be the load in bin i
(number of balls in bin i). Let Xij be an indicator variable for ball j landing in bin i. Pr[Xij = 1] = 1/n.
Then Yi =

∑m
j=1 Xij . The Xij for j = 1, . . . ,m are independent.

E[Yi] =

m∑
j=1

E[Xij ] = m · 1
n
=

m

n

V ar(Yi) =

m∑
j=1

V ar(Xij) = m · 1
n

(
1− 1

n

)
≈ m

n

A key quantity of interest is the maximum load over all bins, Z = maxni=1 Yi. How unevenly are the balls
spread? What is E[Z]?

Let’s focus on the case m = n. Then E[Yi] = 1 and V ar(Yi) = 1(1− 1/n) < 1. The variables Yi are
correlated, making direct analysis difficult. We can use a combination of a deviation inequality and the
union bound.

Lemma 2 (Union Bound). Let A1, . . . , An be events. Then Pr[A1 ∪A2 ∪ · · · ∪An] ≤
∑n

i=1 Pr[Ai].

Let’s apply Chebyshev’s inequality to Yi for m = n: Pr[|Yi − E[Yi]| ≥ γ] ≤ V ar(Yi)
γ2 < 1

γ2 . Let

γ = t
√
n. We have Pr[|Yi− 1| ≥ t

√
n] ≤ 1

t2n . This implies Pr[Yi ≥ t
√
n+1] ≤ Pr[|Yi− 1| ≥ t

√
n] ≤ 1

t2n .
Now, let’s bound the probability of the maximum load.

Pr[Z ≥ t
√
n+ 1] = Pr[∃i, Yi ≥ t

√
n+ 1]

= Pr[∪n
i=1{Yi ≥ t

√
n+ 1}]

≤
n∑

i=1

Pr[Yi ≥ t
√
n+ 1] (by Union Bound)

≤
n∑

i=1

1

t2n
= n · 1

t2n
=

1

t2

Exercise 2. Show that E[Z] ≤ c
√
n for some fixed constant c.

4.3 Random Walk on the Line

Start at the origin. At each step, walk one unit to the right or left with equal probability (1/2). Let
Xi ∈ {−1,+1} be the i-th step. Let Yn =

∑n
i=1 Xi be the position after n steps.

E[Xi] = 0, V ar(Xi) = E[X2
i ]− (E[Xi])

2 = 1− 0 = 1

E[Yn] =
∑

E[Xi] = 0

V ar(Yn) =
∑

V ar(Xi) = n
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The standard deviation is σYn
=

√
n. Using Chebyshev’s inequality:

Pr[|Yn − E[Yn]| ≥ t
√
n] = Pr[|Yn| ≥ t

√
n] ≤ 1

t2

This implies that the expected distance from the origin, E[|Yn|], is O(
√
n).

5 Chernoff-Hoeffding Bounds

Chernoff-Hoeffding bounds are very useful probabilistic inequalities that provide tight bounds in many
settings. To motivate, they give much better results than Chebyshev’s inequality for the previous exam-
ples:

• Balls and Bins (m = n): E[Z] = O
(

logn
log logn

)
, much better than O(

√
n).

• Random Walk: Pr[|Yn| ≥ t
√
n] ≤ 2e−t2/2, which is much stronger than ≤ 1

t2 .

5.1 Chernoff Bounds for Sums of Binary Variables

Theorem 1. Let X =
∑n

i=1 Xi, where Xi are independent binary random variables (Xi ∈ {0, 1}). Let
µ = E[X]. Then:

1. Upper Tail: For any δ > 0,

Pr[X ≥ (1 + δ)µ] ≤
[

eδ

(1 + δ)(1+δ)

]µ
2. Lower Tail: For δ ∈ (0, 1),

Pr[X ≤ (1− δ)µ] ≤
[

e−δ

(1− δ)(1−δ)

]µ
These are often called multiplicative Chernoff bounds.

5.1.1 Proof of Chernoff Bound (Upper Tail)

The key idea is to use the moment generating function and apply Markov’s inequality. For any t > 0:

Pr[X ≥ (1 + δ)µ] = Pr[etX ≥ et(1+δ)µ] ≤ E[etX ]

et(1+δ)µ

Now we bound E[etX ]:

E[etX ] = E
[
et

∑
Xi

]
= E

[∏
etXi

]
=
∏

E[etXi ] (by independence)

Let E[Xi] = pi. Then E[etXi ] = pie
t·1 +(1− pi)e

t·0 = pie
t +1− pi = 1+ pi(e

t − 1). Using the inequality
1 + x ≤ ex:

E[etXi ] ≤ epi(e
t−1)

So,
∏

E[etXi ] ≤
∏

epi(e
t−1) = e

∑
pi(e

t−1) = e(e
t−1)

∑
pi = e(e

t−1)µ. Plugging this back into the Markov
bound:

Pr[X ≥ (1 + δ)µ] ≤ e(e
t−1)µ

et(1+δ)µ
=

[
ee

t−1

et(1+δ)

]µ
We choose t to minimize the expression. Let g(t) = et − 1− t(1 + δ). g′(t) = et − (1 + δ) = 0 =⇒ et =
1+ δ =⇒ t = ln(1+ δ). Substituting this value of t gives the exponent: (1+ δ)− 1− (1+ δ) ln(1+ δ) =
δ − (1 + δ) ln(1 + δ). The bound becomes:[

eδ−(1+δ) ln(1+δ)
]µ

=

[
eδ

e(1+δ) ln(1+δ)

]µ
=

[
eδ

(1 + δ)(1+δ)

]µ
The proof for the lower tail is similar, using Pr[X ≤ (1− δ)µ] = Pr[e−tX ≥ e−t(1−δ)µ] for t > 0.
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5.1.2 Simplified Chernoff Bounds

The standard forms can be simplified into more convenient bounds. For µ = E[X]:

• Lower Tail: For 0 < δ < 1,

Pr[X ≤ (1− δ)µ] ≤ e−µδ2/2

• Upper Tail: For 0 < δ < 1,

Pr[X ≥ (1 + δ)µ] ≤ e−µδ2/3

For δ ≥ 1 (large deviations),

Pr[X ≥ (1 + δ)µ] ≤ e−µ(1+δ) ln(1+δ)/2 ≈ e−cδ ln(δ)µ

5.2 Hoeffding’s Inequality (General Case)

This is an additive form of the bound for variables bounded in an interval.

Theorem 2 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent random variables such that Xi ∈
[ai, bi]. Let X =

∑n
i=1 Xi. Then for any a > 0,

Pr[|X − E[X]| ≥ a] ≤ 2e
− 2a2∑n

i=1
(bi−ai)

2

A common special case is for Xi ∈ {−1, 1}, where bi − ai = 2.

Pr[|X − E[X]| ≥ a] ≤ 2e−
a2

2n

Note that this bound depends on n and a, and is useful when E[X] can be 0.

6 Applications of Chernoff-Hoeffding Bounds

6.1 Balls and Bins (revisited)

For m = n balls into n bins, Yi is the load on bin i. E[Yi] = 1. Let’s bound the probability that
Yi ≥ 10 lnn

ln lnn . Here µ = 1. Let (1 + δ)µ = 10 lnn
ln lnn . This implies δ is large. We use the large deviation

upper tail bound:

Pr[Yi ≥ (1 + δ)µ] ≤ e−
(1+δ) ln(1+δ)µ

2

We have (1 + δ)µ = 10 lnn
ln lnn . For large n, ln(1 + δ) ≈ ln(10 lnn

ln lnn ) ≈ ln lnn. So, (1 + δ) ln(1 + δ)µ ≈
(10 lnn

ln lnn )(ln lnn) = 10 lnn.

Pr

[
Yi ≥ 10

lnn

ln lnn

]
≤ e−

10 lnn
2 = e−5 lnn =

1

n5

By the union bound, the probability that the max load exceeds this value is:

Pr

[
Z ≥ 10

lnn

ln lnn

]
≤

n∑
i=1

Pr

[
Yi ≥ 10

lnn

ln lnn

]
≤ n · 1

n5
=

1

n4

This shows that with high probability, the maximum load is O
(

lnn
ln lnn

)
.

6.2 Randomized Quicksort

We saw that randomized quicksort runs in expected time O(n lnn). We can show that the runtime is
tightly concentrated around this mean. Let Q(A) be the number of comparisons on an array A of size
n. We will show that with high probability, the recursion depth is bounded.

Consider a fixed element a. At each level of recursion, a is in some sub-array Si. We call level i
”lucky” for a if the chosen pivot splits Si such that |Si+1| ≤ 3

4 |Si|. The probability of a lucky split is
at least 1/2. After h = 32 lnn levels, we want to know the probability that a is still in a sub-array
of size > 1. For this to happen, a must have had very few lucky splits. The number of lucky splits
needed to reduce an array of size n to size 1 is roughly log4/3 n ≈ 3.4 lnn. Let’s consider h = 32 lnn coin
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tosses (for lucky/unlucky splits). The expected number of heads (lucky splits) is µ = 1
2h = 16 lnn. The

recursion depth for element a is greater than h only if the number of lucky splits in h rounds is less than
≈ 4 lnn. Let Y be the number of lucky splits. We want to bound Pr[Y < 4 lnn]. Here, µ = 16 lnn.
4 lnn = (1− 3

4 )µ. So δ = 3/4. Using the simplified lower tail bound:

Pr[Y ≤ (1− δ)µ] ≤ e−µδ2/2

Pr[Y < 4 lnn] ≤ e−(16 lnn)(3/4)2/2 = e−(16 lnn)(9/16)/2 = e−9/2 lnn =
1

n4.5

(Note: the lecture notes use different constants leading to 1/n9, but the principle is the same). By the
union bound over all n elements, the probability that any element has a recursion depth > 32 lnn is
bounded by n · 1

n4.5 = 1
n3.5 , which is very small. Since the number of comparisons at each level is at most

n, the total number of comparisons is bounded by (depth)× n = O(n lnn) with high probability.

6.3 Random Walk (revisited)

Using Hoeffding’s inequality for Yn =
∑n

i=1 Xi where Xi ∈ {−1, 1} and E[Yn] = 0. Let a = t
√
n.

Pr[|Yn| ≥ t
√
n] ≤ 2e

− 2(t
√

n)2∑n
i=1

(1−(−1))2 = 2e−
2t2n∑

4 = 2e−
2t2n
4n = 2e−t2/2

This is an exponential decay in t2, which is significantly stronger than the 1/t2 decay from Chebyshev’s
inequality.
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