Lecture 3: Polynomial Identity Testing and
Application to Matching

1 Polynomial Identity Testing (PIT)
Definition 1 (Field). A field F is a set with two operations, addition (+) and
multiplication (), satisfying:
e Commutative addition and multiplication.
o (F,+) is an abelian group.
o (F\ {0},) is a commutative group.
o The distributive law holds: a(b+ ¢) = ab + ac.
Ezamples: Reals (R), complex numbers (C), rationals (Q).

Definition 2 (Finite Fields). A finite field is a field with a finite number of
elements.

o Z,={0,1,2,...,p— 1} with addition and multiplication modulo a prime
D.

o FEvery finite field has size p* for some prime p and integer k > 1.

1.1 The PIT Problem

Problem: Given a multivariate polynomial P(z1, o, ...,x,) over a field F via
a "black box”, we want to know if P is identically zero, i.e., P = 0.

By ”black box”, we mean we can ask for values of P(ay,as,...,a,) for any
given field elements a1, ...,a, € F. More formally, we are given a circuit that
evaluates P.

Example: P(xy, 12, 23) = 2(21 — 22)x3 + 2w320 + 227 — (11 + 13)°.

Checking if two polynomials P; and P» are equal is the same as checking if
P1 — P2 =0.

Definition 3 (Multivariate Polynomial). A multivariate polynomial is a sum of
monomials with coefficients. A monomial is a product of powers of the variables:
i1, o

i
xl (E2 -..‘rﬂTl

where i1,142,...,1, > 0 are integers. The degree of a monomial is 2?21 i;. The
degree of a polynomial P, denoted deg(P), is the mazimum degree among its
monomials.

Ezample: For P(x1,12) = x3x3 + 210 + 2923, deg(P) = 12.

1.2 Algorithms for PIT
1.2.1 Univariate Case
A polynomial with only one variable, x.

Theorem 1. A degree d non-zero univariate polynomial P(x) over a field F has
at most d roots.

Deterministic Algorithm:

1. Pick any set of d 4+ 1 distinct field elements ay,as,...,aq+1.
2. Evaluate P(aq),...,P(agy1).

3. If all are zero, then P = 0. Otherwise, P # 0.
Randomized Algorithm:

1. Let S C F be a finite set.

2. Pick a € S uniformly at random.

3. If P(a) =0, output P =0.

4. Else, output P # 0.

Analysis:

e If P =0, the algorithm is always correct.

e If P # 0, the algorithm makes an error only if it picks a root of P.

d
Pr[Algorithm outputs YES|P # 0] < 5]
By choosing |S| large, we can make the error probability small. We can
repeat the test to decrease the error probability exponentially.

The Catch: If working with reals, we cannot ”really” pick a fully random
real number or evaluate P(a) exactly due to precision issues. A common tech-
nique is to work over a finite field. If we know the coefficients are integers with
maximum absolute value B, we can choose a prime p > max (B, d) and perform
all computations in Z,. Then P =0 over Q iff P = 0 over Z,.

1.2.2 Multivariate Case

For multivariate polynomials, there is no easy deterministic algorithm known.
But randomization still works!

Lemma 1 (Schwarz-Zippel Lemma). Let P(x1,...,2z,) be a non-zero multi-
variate polynomial of total degree d over a field F. Let S CF be a finite set. If
we pick ay, . ..,a, uniformly and independently at random from S, then

d

Pr[P(ay,. .. a,) = 0] < —
I‘[(ala 70’) O} |S|

Proof Sketch by Induction on n. Base Case (n = 1): P(xy) is a univariate
polynomial of degree at most d. It has at most d roots. The probability of
picking a root is < d/|S|.

Inductive Step: Assume the lemma holds for n—1 variables. We can write
P as a polynomial in z,,:

k
P(zy,...,x,) = ZQj(xl, e Tp1)Td,
§=0

where k is the highest power of x,, and Qi Z 0. Let deg(Qx) < d— k. Let A be
the event P(ay,...,a,) =0 and B be the event Qx(a1,...,an—1) =0.

Pr[A] = Pr[A|B] Pr[B] + Pr[A|-B] Pr[-B]
< 1-Pr[B]+Pr[A|-B]-1

By the inductive hypothesis, Pr[B] < % < 4=k If =B occurs, then

IS [S]
P(aq,...,an-1,Z,) is a non-zero univariate polynomial in z,, of degree at most
k. The probability that a, is a root is < k/|S]|. So, Pr[A|-B] < %
d—Fk k d
PriA| < ——+ — = —
sl s s

O

Major Open Question: Is there a deterministic polynomial-time algo-
rithm for PIT? This is a central question in derandomization. A positive answer
would imply major results in computational complexity, such as circuit lower
bounds.

2 Application to Matchings

Definition 4 (Matching). Given a graph G = (V, E), a matching is a subset of
edges M C E such that no two edges in M share a vertex.

o A matching is perfect if every vertex is incident to exactly one edge in
M. This implies |M| = |V|/2.

Matching is a fundamental problem with many applications. Algorithmic
questions include finding a perfect matching, a maximum cardinality matching,
or a maximum weight matching. For bipartite graphs, these problems can be
solved using network flow algorithms. For general graphs, the algorithms are
more complex (e.g., using ”blossoms”). We will see an algebraic randomized
approach.

2.1 Bipartite Perfect Matching

Let G = (UUV, E) be a bipartite graph with |U| = |V| = n. We want to deter-
mine if G has a perfect matching. Let U = {uq,...,u,} and V = {vy,...,v,}.
Define the n x n Edmonds matrix A:

45 if (’Lbi,’l}j))
Ay = .
0 otherwise

where each z;; is a distinct variable.
The determinant of A, det(A), is a multivariate polynomial.

det(A) = > sgn(o) [[4w
=1

gESy

where S, is the set of all permutations of {1,...,n}. Each term in this sum
corresponds to a permutation o. The product H?:l Aj o) is non-zero if and
only if for all 4, the edge (u;, vy (;)) exists in G. The set of edges {(ui, vo(;))|i =
1,...,n} is exactly a perfect matching.

Lemma 2. The graph G has a perfect matching if and only if det(A) £ 0.

Proof. If G has no perfect matching, then for any permutation o, there is at
least one i such that (u;,v,(;)) € E. Thus A; ;(;y = 0, and the corresponding
term in the determinant is zero. So, det(A) = 0.

If G has a perfect matching M = {(us, vo(;y)|i = 1,...,n} for some permu-
tation o, then the term H 1 Aie@) = Hl 1 Tis(i) 1S a non-zero monomial in
det(A). Since each permutatlon corresponds to a unique set of variables, this
monomial cannot be cancelled by any other term. Thus, det(A) # 0. O

This reduces the perfect matching problem to PIT. Randomized Algo-
rithm for Bipartite Perfect Matching:

1. Construct the Edmonds matrix A with variables x;;.
The degree of det(A) is n.

Choose a field F with |F| > 2n, for example Z, with a prime p > 2n.

L

For each variable z;;, pick a value a;; uniformly at random from F.

5. Compute the determinant of the resulting numerical matrix.

6. If the determinant is non-zero, output YES (a perfect matching exists).
7. If the determinant is zero, output NO.

By the Schwarz-Zippel Lemma, the probability of error (saying NO when there

is a matching) is at most ﬁ < 50 = % The determinant can be computed
efficiently, e.g., in O(n*) time where w < 2.38 is the matrix multiplication

exponent. This approach is highly parallelizable.

2.2 General Graph Perfect Matching

Let G = (V, E) be a general graph with n = |V| vertices (assume n is even).
Define the n x n skew-symmetric Tutte matrix 7"

Tij if{i,j}EEandi<j

T = —Tj; if{i,j}eEandi>j
0 otherwise
Here, x;; and x;; are the same variable, so T;; = —T};.

Theorem 2 (Tutte, 1947). A graph G has a perfect matching if and only if
det(T") £ 0.

Proof Sketch. The proof is more involved because cancellations are essential. A
term sgn(o) [T, T} »(;) in det(T') is non-zero only if o is a permutation with
no fixed points (since T;; = 0) and {i,0(i)} € E for all i. Such a permutation
decomposes into a set of disjoint cycles in the graph.

e If o contains an odd-length cycle, its term in the determinant expansion
gets cancelled. Consider the permutation ¢’ obtained by reversing an odd
cycle in 0. One can show that sgn(o) [[T »;) = —sgn(o’) [75,0y, and
these two terms cancel out.

e Therefore, all terms corresponding to permutations with odd cycles sum
to zero. The determinant is the sum over permutations o whose cycle
decomposition consists only of even-length cycles.

e If G has a perfect matching M = {{i1,j1},...,{in/2,Jn/2}}, this corre-
sponds to a permutation o consisting of n/2 cycles of length 2 (transpo-
sitions). All cycles are even. The corresponding term is non-zero. It can
be shown that these terms for permutations with only even cycles do not
all cancel out.

e Conversely, if det(T) # 0, there must be a non-cancelling term, which
must correspond to a permutation ¢ with only even-length cycles. A
set of edges corresponding to such a o (a 2-factor with only even cycles)
can be shown to contain a perfect matching (since any even cycle can be
decomposed into two perfect matchings on its vertices).

O

The same randomized algorithm using PIT for det(7") can be used to decide
if a general graph has a perfect matching. This remains one of the most efficient
parallel algorithms for the problem.

2.3 Finding a Matching and the Isolation Lemma

The PIT-based algorithms are decision algorithms (they say if a matching ex-
ists). To find a matching (the search problem), a standard reduction from search
to decision is sequential. For a parallel algorithm, a different idea is needed.

The Isolation Lemma (Mulmuley, Vazirani, Vazirani) is a powerful tool
for this.

Lemma 3 (Isolation Lemma). Let U = {1,2,...,m} be a ground set, and let
F C 2Y be a non-empty family of subsets. Assign a weight w; to each element
i € U, chosen independently and uniformly at random from {1,2,...,2m}. For
a set S C U, its weight is W(S) = >, qw;. Then,

Pr[There is a unique minimum weight set in F| >

DN | =

By assigning random weights to the edges of the graph, the isolation lemma
guarantees that with good probability, there will be a unique perfect matching
of minimum weight. This uniqueness can be exploited in a parallel algorithm
to find that matching.

