Lecture 24: PAC Learning

Handwritten Notes - Converted to LATEX

November 21, 2025

PAC Learning

How do we generalize machine learning? Broadly speaking, **Supervised Learning** is about coming up with an algorithm or suite of algorithms that, given some initial training (labeled data), outputs a "prediction algorithm" that does well on future data that is unlabeled. The most basic but still very useful and important problem is **binary classification** (Yes or No).

Set Up

- 1. **Data** is formalized as vectors $\mathbf{x} \in X$.
- 2. Labeled data: pairs $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ where y_i is the correct label for data \mathbf{x}_i .
- 3. Want to obtain a **prediction algorithm** (could be randomized) $A(\mathbf{x})$ that, given a future data point \mathbf{x} , outputs a label.

Since arbitrary algorithms are complicated and hard to reason about and interpret and optimize over, traditionally the set of prediction algorithms (or **hypotheses** \mathcal{H}) were simple. The term **concept class** \mathcal{C} is used to indicate that we are only interested in finding a "prediction" algorithm from this class.

The PAC Model

The PAC (Probably Approximately Correct) model, introduced by Valiant, is a nice theoretical model that addresses the issues of generalization, sample complexity, and efficiency of learning.

- 4. In the full consistency model we will assume that \exists some $c^*: X \to \{0, 1\}$ which gives the true label for each example. This c is called a **concept**.
- 5. The examples are drawn from a distribution D.

Given a hypothesis $h \in \mathcal{H}$, we define its **error** with respect to c^* and D as:

$$\operatorname{err}_D(h) = \Pr_{\mathbf{x} \sim D}[h(\mathbf{x}) \neq c^*(\mathbf{x})]$$

PAC Learnability Definition

Definition: A pair (C, \mathcal{H}) is **PAC-Learnable** if \exists a learning algorithm that, given $m = \text{poly}(1/\epsilon, 1/\delta)$ random samples from D, outputs (efficiently) a hypothesis h such that $\Pr_{\mathcal{S}}[\text{err}_D(h) > \epsilon] \leq \delta$.

- (i) The algorithm is allowed to output an imperfect hypothesis even when there exists a perfect concept.
- (ii) The algorithm is allowed to fail with some small probability δ .

Consistency and Generalization Bounds for Finite \mathcal{H}

Consistency

Definition: Given a set of correctly labeled examples $S = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$ (where $y_i = c^*(\mathbf{x}_i)$), a hypothesis $h: X \to \{0, 1\}$ is **consistent** if $h(\mathbf{x}_i) = y_i$ for all i.

Theorem for Finite Hypothesis Classes (Consistent Case)

Theorem: Let \mathcal{H} be a finite hypothesis class and let $\epsilon, \delta \in (0, 1)$. Suppose the sample size is:

$$n \ge \frac{1}{\epsilon} \left(\ln |\mathcal{H}| + \ln \frac{1}{\delta} \right)$$

Then, if h is consistent with S, then $\operatorname{err}_D(h) \leq \epsilon$ with probability $1 - \delta$.

Proof Sketch: Say hypothesis h is **bad** if $\operatorname{err}_D(h) > \epsilon$. Let h_1, h_2, \ldots, h_l be the bad hypotheses. The probability that \bar{h}_i is consistent with S is at most $(1 - \epsilon)^n$. By the Union Bound, if $l(1 - \epsilon)^n < \delta$, then no bad hypothesis will be consistent, so the output of the algorithm will be a good hypothesis. This condition is satisfied by the required n since $l \leq |\mathcal{H}|$.

Theorem for Finite Hypothesis Classes (Agnostic Case)

We may only have a "good" hypothesis $h^* \in \mathcal{H}$ that makes a small error $\operatorname{err}_D(h^*)$. We find a hypothesis h that makes the sample error $\operatorname{err}_S(h)$ as small as possible.

Theorem: Let \mathcal{H} be a finite hypothesis class and let $\epsilon, \delta \in (0,1)$. Suppose the sample size is:

$$n \ge \frac{1}{2\epsilon^2} \left(\ln |\mathcal{H}| + \ln \frac{2}{\delta} \right)$$

Then, with probability $1 - \delta$, for all $h \in \mathcal{H}$:

$$|\operatorname{err}_S(h) - \operatorname{err}_D(h)| \le \epsilon$$

Proof: Needs additive Chernoff bound.

VC-Dimension Based Bounds

Consider the setting where $X \subseteq \mathbb{R}^d$ and \mathcal{H} is the class of half-spaces in \mathbb{R}^d . Here, $|\mathcal{H}|$ is infinite.

Theorem: Let \mathcal{H} be a family of hypotheses with VC-dimension d_{VC} . Let $\epsilon, \delta \in (0,1)$.

- 1. If $n \geq \frac{c}{\epsilon} \left(d_{VC} \ln \frac{d_{VC}}{\epsilon} + \ln \frac{1}{\delta} \right)$ for some constant c, then, with probability 1δ , any consistent hypothesis h has $\operatorname{err}_D(h) \leq \epsilon$.
- 2. If $n \ge \frac{1}{\epsilon^2} \left(d_{VC} \ln \frac{d_{VC}}{\epsilon} + \ln \frac{1}{\delta} \right)$, then $\forall h \in \mathcal{H}, |\text{err}_D(h) \text{err}_S(h)| \le \epsilon$.

Examples

Disjunctions

Let $X = \{0, 1\}^n$. \mathcal{C} is the class of **disjunctions** of Boolean literals (e.g., $z_1 + z_5 + \overline{z_7}$). The size of the concept class is $|\mathcal{C}| = 3^n$.

Claim: Given a set of examples $S = \{(\mathbf{x}_i, y_i)\}$, there is an efficient algorithm that outputs a disjunction $c \in \mathcal{C}$ that is consistent with S if one exists.

Algorithm Outline:

- 1. Start with $c = (z_1 + \overline{z_1}) + \cdots + (z_n + \overline{z_n})$.
- 2. Let S_0 be examples with $y_i = 0$ and S_1 be examples with $y_i = 1$.
- 3. Prune based on S_0 (Negative Examples): For each $i \in S_0$, remove literals from c that are satisfied by \mathbf{x}_i .
- 4. Check S_1 (Positive Examples): For each $i \in S_1$, check if at least one literal in c is satisfied by \mathbf{x}_i . If not, output "no consistent hypothesis".

Figure 1: Example Data Table

Example	Data (x)	Label (y)
\mathbf{x}_1	(0,0,1,0,1)	$y_1 = 0$
\mathbf{x}_2	(1,0,1,0,1)	$y_2 = 0$
\mathbf{x}_3	(1,1,0,0,0)	$y_3 = 0$
\mathbf{x}_4	(1,1,0,0,0)	$y_4 = 1$
\mathbf{x}_5	(0,0,0,0,0)	$y_5 = 1$

Half-Spaces in \mathbb{R}^d

 \mathcal{C} is the class of half-spaces in \mathbb{R}^d . Finding a consistent hypothesis is equivalent to finding a hyperplane $\mathbf{a} \cdot \mathbf{x} - b = 0$ that separates positive examples (S_1) from negative examples (S_0) .

This can be formulated as a **Linear Program (LP)** to find the coefficients a_1, \ldots, a_d, b :

• Constraints for $i \in S_1$ (positive examples):

$$\sum_{j=1}^{d} a_j x_{i,j} - b > 0$$

• Constraints for $i \in S_0$ (negative examples):

$$\sum_{j=1}^{d} a_j x_{i,j} - b \le 0$$

The LP is feasible if and only if a separating half-space exists.