Lecture 23: Sampling in Geometric Range Spaces

11/23/2025

1 Set Systems and Range Spaces

Set systems arise in many applications. A set system consists of a pair (P, R) where P is a set and R is a collection of subsets of P. When P is finite, we have a finite set system. Sometimes finite set systems are thought of as hypergraphs with P as vertices and each $r \in R$ as a hyperedge.

Here we will be concerned with set systems that arise in geometric settings where P is typically all of \mathbb{R}^d for some dimension d, or a finite subset of \mathbb{R}^d . We also consider R to be sets that are induced by structured shapes that intersect with P.

1.1 Examples of Shapes

Examples of shapes include:

- Intervals
- Disks
- Half-spaces
- Polygons

In the geometric setting, (P, R) are often called **range spaces** and each $r \in R$ is called a **range**. Typically we associate r with a shape such as an interval I, and then

$$r = I \cap P$$

Geometric range spaces have additional properties that lead to a number of applications, and the notion of VC dimension, ε -sample theorem, ε -net theorem and others have had striking influence on many areas, in particular machine learning where the notion of VC dimension arose.

2 VC Dimension

VC dimension of a set system is one important measure of the complexity of a set system.

Definition 1. Let (P,R) be a range space. A finite subset $Q \subseteq P$ is said to be **shattered** by R if $\{Q \cap r : r \in R\} = 2^Q$. In other words, $R|_Q = 2^Q$, the powerset of Q.

Example 1. Suppose P is the real line and R is the collection of all closed intervals.

It can be seen from the figure that $Q = \{a, b\}$ can be shattered by the collection of intervals:

- Ø
- {*a*}
- {*b*}
- {*a*, *b*}

Definition 2. The **VC dimension** of a set system (P, R) is the maximum cardinality of a finite set $Q \subseteq P$ such that Q is shattered by R.

Example 2. Let $P = \mathbb{R}$ and R be the collection of intervals. Then VC-dim = 2.

Why? We saw that it is at least 2. Can it be ≥ 3 ?

Suppose $Q = \{a, b, c\}$ where a < b < c. Can we get the set $\{a, c\}$ as an intersection of $\{a, b, c\}$ and an interval? No.

Example 3. $P = \mathbb{R}^2$ (the 2D plane) and $R = \{D : D \text{ is a closed disk in the plane}\}.$

VC dimension is 3. Three points can be shattered but not 4.

Example 4. $P = \mathbb{R}^d$ and R = set of half-spaces.

Recall: a half-space is defined by an inequality $\sum a_i x_i \geq b$ for some $a_1, a_2, \dots, a_d, b \in \mathbb{R}$.

Claim: VC-dim = d + 1.

It is easy to see that VC-dim $\geq d+1$. Take the d+1 points: $(0,0,\ldots,0)$ and $(1,0,\ldots,0)$, $(0,1,\ldots,0)$, \ldots , $(0,0,\ldots,0,1)$.

This set can be shattered. Why?

However, d+2 points cannot be shattered, and this follows from Radon's theorem.

Theorem 1 (Radon's Theorem). Let Q be a set of d+2 points in \mathbb{R}^d . Then one can partition Q into S_1 and S_2 such that

$$convex-hull(S_1) \cap convex-hull(S_2) \neq \emptyset$$

The preceding theorem shows Q cannot be shattered by half-spaces.

3 Sauer's Lemma

Now that we have seen the definition of VC dimension, we state and prove a key technical lemma about set systems with bounded VC dimension.

Theorem 2 (Sauer's Lemma). Suppose a set system (P,R) has VC dimension at most d. Let $Q \subseteq P$ be a finite set of cardinality n. Then

$$|R|_Q| \le \sum_{i=0}^d \binom{n}{i} \le n^d$$

Proof. By induction on n.

If n = 0, it is trivial.

Let Q be a set of n points, n > 0. We can restrict attention to $R|_Q = \{r \cap Q : r \in R\}$. Hence we can work with a finite range space. Now all we need to do is count $|R|_Q|$.

Fix some $p \in Q$.

Let $R_1 = \{r \setminus \{p\} : r \in R\}$ be the set of all ranges obtained by removing p from the original ranges.

Suppose r is such that $p \in r$ and also $r \setminus \{p\} \in R$. Then both r and $r \setminus \{p\}$ project to the same range in R_1 . So to count $|R|_Q|$ we create a separate range space.

Let $R_2 = \{r \setminus \{p\} : r \cup \{p\} \in R \text{ and } r \setminus \{p\} \in R\}.$

From this explanation we have:

Claim 3.

$$|R|_Q| = |R_1| + |R_2|$$

Now we consider the two range spaces $(Q \setminus \{p\}, R_1)$ and $(Q \setminus \{p\}, R_2)$.

Claim 4. $VC\text{-}dim(Q \setminus \{p\}, R_1) \leq d$.

Proof. Removing a point does not increase VC-dim.

Claim 5. *VC-dim of* $(Q \setminus \{p\}, R_2) \le d - 1$.

Proof. If $Q' \subseteq Q \setminus \{p\}$ is shattered by R_2 , then since every range $r \in R_2$ satisfies the property that $r \cup \{p\}$ and $r \setminus \{p\} \in R$, we would have $Q' \cup \{p\}$ is shattered by R. Thus $|Q'| \le d - 1$.

Now by induction:

$$|R_1| \le \sum_{i=0}^d \binom{n-1}{i}$$

and

$$|R_2| \le \sum_{i=0}^{d-1} \binom{n-1}{i}$$

Thus,

$$|R|_{Q}| = |R_{1}| + |R_{2}|$$

$$\leq \sum_{i=0}^{d} {n-1 \choose i} + \sum_{i=0}^{d-1} {n-1 \choose i}$$

$$= \sum_{i=0}^{d} {n \choose i}$$

3.1 Shattering Dimension

In many settings, the only way VC-dim is used is via the bound given by Sauer's lemma. So it makes sense to define the following:

Definition 3. The shattering dimension of a range space (P,R) is d if $\forall Q \subseteq P$ with |Q| = n, the size of $R|_Q \leq O(n^d)$.

 $VC\text{-}\dim(P,R) = d \Rightarrow \text{shattering-}\dim(P,R) = d.$

Converse is also true with weaker parameters:

Shattering-dim $(P, R) = d \Rightarrow VC$ -dim $(P, R) = O(d \log d)$.

3.2 Closure Properties

One important aspect of VC-dim is a kind of closure when combining range spaces.

Theorem 6. Suppose (P, R_1) and (P, R_2) are range spaces with VC-dim d_1 and d_2 respectively. Then:

- VC-dim of (P, R) where $R = \{r_1 \cap r_2 : r_1 \in R_1, r_2 \in R_2\}$ is $O(d_1d_2)$.
- Similarly for (P,R) where $R = \{r_1 \cup r_2 : r_1 \in R_1, r_2 \in R_2\}.$

4 ε-Sample and ε-Net Theorem

We now discuss two theorems about how a random sample of a set from a set system (P, R) can approximate it.

For the following discussion, it is useful to think of P as a finite set. Some of the concepts can be lifted to infinite sets with appropriate generalizations.

For a given system (P,R), let $\mu(r)$ denote the measure of r, i.e., $\mu(r) = \frac{|r|}{|P|}$.

Suppose we take a small random sample Q from P. Does Q preserve the measure of all $r \in R$?

For this, define $\mu_Q(r) = \frac{|r \cap Q|}{|Q|}$.

Clearly a small sample cannot touch all ranges, so we need to allow some additive error.

Definition 4. A subset $Q \subseteq P$ is an ε -sample for (P, R) if

$$|\mu_Q(r) - \mu(r)| \le \varepsilon \quad \forall r \in R$$

A related notion is the following:

Definition 5. Q is an ε -net for (P,R) if $|Q \cap r| \ge 1$ for all $r \in R$ where $\mu(r) \ge \varepsilon$.

Note that an ε -sample is automatically an ε -net.

Theorem 7. Let (P,R) be a range space with VC dimension d. Let $\ell = \frac{cd}{\varepsilon^2} \log \frac{d}{\delta}$. Then a random sample of ℓ points with repetition from P is an ε -sample with probability $\geq 1 - \delta$.

Note: The sample size does not depend on |P|. Could be infinite.

Note: The theorem relies only on the growth rate of the number of distinct ranges of a given size that follows from Sauer's lemma. Hence the proof is not so tied to VC dimension itself.

A stronger bound is known for ε -nets:

Theorem 8. Let (P,R) be a range space with VC-dim $\leq d$. Let $\ell = \frac{cd}{\varepsilon} \log \frac{1}{\delta}$. Then a random sample of ℓ points with repetition from P is an ε -net with probability $\geq 1 - \delta$.

5 Proof of ε -Sample Theorem

It is a clever argument using a double sample argument.

First we recall the additive Chernoff bound:

Theorem 9 (Chernoff Bound). Let $X_1, X_2, \dots, X_n \in \{0,1\}$ and independent. Let $Y = \sum_{i=1}^n X_i$ and $\mu = \mathbb{E}[Y]$. Then

$$\Pr[|Y - \mu| \ge t] \le 2e^{-\frac{2t^2}{n}}$$

Equivalently, $\Pr[|Y - \mu| \ge \varepsilon n] \le 2e^{-2\varepsilon^2 n}$

To see how to use the above theorem in our setting: Fix a range r with $\mu(r) = p \in [0,1]$. Suppose we take an ℓ -sample Q with repetition. What is $\mathbb{E}[\mu_Q(r)]$?

Let
$$X_i$$
 be indicator random variable for sample i being in r .
 Let $Y = \sum_{i=1}^{\ell} X_i$. Then $\mu_Q(r) = \frac{Y}{\ell}$ and $\mathbb{E}[Y] = \mu(r) \cdot \ell$.
 Hence $\mathbb{E}[\mu_Q(r)] = \mu(r)$.

Therefore, $\Pr[|\mu_Q(r) - \mu(r)| \ge \varepsilon] \le 2e^{-2\varepsilon^2 \ell}$.

5.1 Full Proof of ε -Sample Theorem

It is a clever argument using a double sample argument.

Let Q be a sample of size ℓ . Let Q' be an independent sample also of size ℓ .

Let A be the event that \exists some range r such that $|\mu_Q(r) - \mu(r)| > \varepsilon$. Here $\mu(r) = \frac{|r|}{|P|}$ and $\mu_Q(r) = \frac{|r \cap Q|}{|Q|}$ for short.

Let B be the event that $\exists r$ such that $|\mu_{Q}(r) - \mu_{Q'}(r)| > 2\varepsilon$.

Claim 10. $Pr[A] \le 2 Pr[B]$.

Proof. Let D be the event that $\exists r$ such that $|\mu_Q(r) - \mu(r)| > \varepsilon$ and $|\mu_{Q'}(r) - \mu(r)| \le \varepsilon$. We have:

$$Pr[B] = Pr[D] + Pr[D \text{ and } A]$$

 $\geq Pr[D|A] \cdot Pr[A]$

We claim that $\Pr[D|A] \ge \frac{1}{2}$, which would imply that $\Pr[A] \le 2\Pr[B]$. To see this, suppose event A happens: $\exists r$ such that $|\mu_Q(r) - \mu(r)| > \varepsilon$. For this r, via the additive Chernoff bound,

$$\Pr[|\mu_{Q'}(r) - \mu(r)| > \varepsilon] \le 2e^{-2\varepsilon^2 \ell} \le \frac{1}{2}$$

This is because r is fixed and the sample is big enough and Q' is independent of Q.

If $|\mu_Q(r) - \mu(r)| > \varepsilon$ and $|\mu_{Q'}(r) - \mu(r)| \le \varepsilon$, then by triangle inequality:

$$|\mu_Q(r) - \mu_{Q'}(r)| \ge |\mu_Q(r) - \mu(r)| - |\mu_{Q'}(r) - \mu(r)|$$

> $\varepsilon - \varepsilon = 0$

In fact, $|\mu_Q(r) - \mu_{Q'}(r)| > 2\varepsilon$ (by considering the case when $\mu_Q(r) - \mu(r) > \varepsilon$ and $|\mu_{Q'}(r) - \mu(r)| \le \varepsilon$, so $\mu_Q(r) - \mu_{Q'}(r) \ge (\mu(r) + \varepsilon) - (\mu(r) + \varepsilon) = 2\varepsilon$ in the worst case). Thus $\Pr[D|A] \geq \frac{1}{2}$.

Thus we can focus on event B, which is $\Pr[\exists r : |\mu_Q(r) - \mu_{Q'}(r)| > 2\varepsilon]$ for some range r. Within factor of 2 we will get Pr[A].

To analyze B, we think of the process differently. Instead of picking Q and Q' independently as two separate steps, we think of picking 2ℓ elements Q_0 and then splitting Q_0 into two halves Q and Q'.

$$\Pr[B] = \sum_{Q_0} \Pr[Q_0] \cdot \Pr[B|Q_0]$$

$$\leq \max_{Q_0} \Pr[B|Q_0]$$

What is $\max_{Q_0} \Pr[B|Q_0]$?

We think of Q_0 as an arbitrary multiset of 2ℓ points and Q and Q' are obtained by evenly splitting of Q_0 into ℓ points each.

What is the advantage of this? If we fix Q_0 , then $R|_{Q_0}$ has $\leq (2\ell)^d$ ranges.

Thus we need to only worry about a small number of ranges.

For any fixed range in $R|_{Q_0}$, via the additive Chernoff bound:

$$\Pr[|\mu_Q(r) - \mu_{Q_0}(r)| > \varepsilon] \le 2e^{-2\varepsilon^2 \ell}$$

$$\Pr[|\mu_{Q'}(r) - \mu_{Q_0}(r)| > \varepsilon] \le 2e^{-2\varepsilon^2 \ell}$$

This is because $\ell = \frac{cd}{\varepsilon^2} \log \frac{d}{\delta}$. Since $|\mu_Q(r) - \mu_{Q'}(r)| \le |\mu_Q(r) - \mu_{Q_0}(r)| + |\mu_{Q_0}(r) - \mu_{Q'}(r)|$:

$$\Pr[|\mu_Q(r) - \mu_{Q'}(r)| > 2\varepsilon] \le 4e^{-2\varepsilon^2 \ell}$$

By the union bound:

$$\Pr[B] \le (2\ell)^d \cdot 4e^{-2\varepsilon^2 \ell}$$

$$< \delta$$

Therefore $\Pr[A] \leq 2\delta$, which gives us $\Pr[A] \leq 1 - \delta$ for appropriate choice of constants.