


























 








































































































Lecture 10 31 2025

Swap Rounding for Spanning Teas

We previously saw pipage
rounding

as a way to
convert a fractional

solution Xi Xi Xn E 0,13

such that Σ xi k into a

random integer solution X1 X2 Xn

such that

1 Xi E 20113 and E Xi Xi

ii Σ Xi k

iii X X Xn are negatively

correlated






































































































































Page rounding

1 While x ̅ is not fully integral do

Let Xi G 10,1 i both
fractional

Let E min Lxi Xj 1 Xi 1 Xj

Ton a coin with pub

It coin is heads

it Xi Σ

Xj Xj e

Else
Xi E

X Xj e

end while

2 Output x ̅






































































































































Today the goal is to show a

related but different scheme

called sap rounding that
works

for fractional points
in any matid

polytope It is easier to see the

Combinatorics of this than the

pipage rounding
We will explain

this via spanning
trees since they

are familiar

DefI Let G
V E be a connected

graph with in edges can be a

multigraph Let E er em






































































































































A vector x ̅ E 0,13m is a fractional

spanning
tree of a if exist

spanning
trees Ti T Th of a

and coefficients X X XL C 011

Such that

i EX I and
ist

ii each edge e x ̅ e Feet

Remark Note that x ̅ may

Torrespond to different decomposition

Not necessarily unique






































































































































to
Ex

title

1

no no

Ito 1 it

Suppose we are given
a fractional

spanning
tree x ̅ along with a

h
decomposition as Σ tilt

i 1

We want to round x ̅ into a random

a spanning tree X1 X Xm






































































































































A basic property we want is

that ei E X 1 Xi

This is easy to
accomplish Simply

pick a random tree from Ti Th

where the probability that Ti is

picked is equal to 7

Howen Xi Xu Xm can be

very
correlated We will now describe

a way to do this
in a

different way For this we will

use a nice exchange property

of spanning liees
This is more

generally tene of
bases of any

matroid






































































































































generally if

Lemma Let T and To be

two spanning
lies of a graph

a V E Suppose E TD E T

Then for any edge
e E E TI ECT

there is anedge eat ELT I E T

Such that T enter and

T2 Cate are both spanning
lien

Proof exercise

The idea in swap rounding
is to

use the exchange property to

merge trees in a step by step way
















































































































Meye X1 Ti Ar Ta

to X f oil 7,6 011

While E Ti ECT do

let C E E T1 E T

find E E ELT ECT such that

T enter and T eye
are

spanning her

with prob tin
T Ti enter

Else
T I ate

Output T Tv



T TzE
oo aero

LotT.at

as T.gr
no

no

I t.fr
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Merge finishes in n 1 steps

Easy to implement with
lice data

studies Swap rounding uses

Meye to iteratively merge the
has

one step at a time

Swap Rounding Xian in Titan Th

It 4 1 return T

Else
T Merge Xi Ti T.it

return 71 7 Ds Ah T Te Th



x ̅ Tit IT 3

IT to Tz
Y
Tim

It is easy to prove by
induction

that this form a martingale

sequence If t is the vector

after t steps then

1 E x ̅ IF x ̅ It

i Only him
coordinates of x ̅ change



in each step

Using above one can show that

if the final vector
is X Xn

then Xi Xm are negatively

correlated



negative correlation is that whenever a pair of variables is being modified, their sum remains constant. Hence,
knowing that one variable is high can only make the expectation of another variable lower.

Lemma 4.1. Let ω → N and let Xt = (X1,t, . . . ,Xn,t) for t → {0, . . . , ω} be a non-negative vector-valued
random process with initial distribution given by Xi,0 = xi with probability 1 ∀i → [n], and satisfying the
following properties:

1. E[Xt+1 | Xt] = Xt for t → {0, . . . , ω} and i → [n].

2. Xt andXt+1 differ in at most two components for t → {0, . . . , ω − 1}.

3. For t → {0, . . . , ω}, if two components i, j → [n] change between Xt and Xt+1, then their sum is
preserved: Xi,t+1 +Xj,t+1 = Xi,t +Xj,t.

Then for any t → {0, . . . , ω}, the components ofXt satisfy E[
∏

i∈S Xi,t] ≤
∏

i∈S xi ∀S ⊆ [n].

Proof. We are interested in the quantity Yt =
∏

i∈S Xi,t. At the beginning of the process, we have E[Y0] =
∏

i∈S xi. The main claim is that for each t, we have E[Yt+1|Xt] ≤ Yt.
Let us condition on a particular configuration of variables at time t, Xt = (X1,t, . . . ,Xn,t). We consider

three cases:

• If no variable Xi, i → S, is modified in step t, we have Yt+1 =
∏

i∈S Xi,t+1 =
∏

i∈S Xi,t = Yt.

• If exactly one variable Xi, i → S, is modified in step t, then by property 1 of the lemma:

E[Yt+1 | Xt] = E[Xi,t+1 | Xt] ·
∏

j∈S\{i}

Xj,t =
∏

j∈S

Xj,t = Yt.

• If two variables Xi,Xj , i, j → S, are modified in step t, we use the property that their sum is preserved:
Xi,t+1 +Xj,t+1 = Xi,t +Xj,t. This also implies that

E[(Xi,t+1 +Xj,t+1)
2 | Xt] = (Xi,t +Xj,t)

2. (1)

On the other hand, the value of each variable is preserved in expectation. Applying this to their difference,
we get E[Xi,t+1 −Xj,t+1 | Xt] = Xi,t −Xj,t. Since E[Z2] ≥ (E[Z])2 holds for any random variable,
we get

E[(Xi,t+1 −Xj,t+1)
2 | Xt] ≥ (Xi,t −Xj,t)

2. (2)
Combining (1) and (2), and using the formula XY = 1

4((X + Y )2 − (X − Y )2), we get

E[Xi,t+1Xj,t+1 | Xt] ≤ Xi,tXj,t.

Therefore,
E[Yt+1 | Xt] = E[Xi,t+1Xj,t+1 | Xt] ·

∏

k∈S\{i,j}

Xk,t ≤
∏

k∈S

Xk,t = Yt,

as claimed. By taking expectation over all configurations Xt we obtain E[Yt+1] ≤ E[Yt]. Consequently,
E[
∏

i∈S Xi,t] = E[Yt] ≤ E[Yt−1] ≤ . . . ≤ E[Y0] =
∏

i∈S xi, as claimed by the lemma.

Any process that satisfies the conditions of Lemma 4.1 thus also satisfies the first statement of Theo-
rem 1.1. Furthermore, the second statement of Theorem 1.1 also follows by observing that for any process
(X1,t, . . . ,Xn,t) that satisfies the conditions of Lemma 4.1, also the process (1 − X1,t, . . . , 1 − Xn,t) satis-
fies the conditions. As we mentioned in Section 1, these results imply strong concentration bounds for linear
functions of the variables X1, . . . ,Xn (Corollary 1.2).

Both randomized swap rounding and pipage rounding satisfy the conditions of Lemma 4.1 (proofs can be
found in the Appendix). This implies Theorem 1.1. Note that the sequences Xt created by randomized swap
rounding or pipage rounding – besides satisfying the conditions of Lemma 4.1 – are Markovian, and hence they
are vector-valued martingales.
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Conteus Extensions of bet Tintin

Suppose we have a set function

2N R that is real valued

for each subset S E N FIS

is the value of S

Many time it
is useful to extend

f ti fractional
values

g X x Xn where Xi C on

ic n

How should we define it

we know f x Xn if x ̅ E 20,13



We can use probability distribution

view for interpolation

given x ̅ E 0,13 there are multiple

ways of expressing x ̅ as a

convex combination of
the corners

1107 1111

10.6 d
the

Let SEN 5.1 that

Eds Xi VIEN
57 i

Exs 1



570
5

This is the space of all convex

combinations of sets that can

express x ̅ We can think of

α as a probability distribution

lowerdone
We obtain one extension I called

the convex closure by choosing

the distribution that minimizes

the expected value of f

f x ̅ min Σ α tls
SEN

Exs 1
SEN



Exg Xi ie N

Sti

s 30 SEN

Iain f x is a convex

function for any set function f

Proof Exercise

Similarly we can define concave

closure ft if we change min

to max in the above LP

Two other extensions are the

Multilinear extension and the

Lovasz extension


