
Lecture 14: Random Walks in Undirected Graphs

1 Random Walks in Undirected Graphs

A finite state Markov chain corresponds to a random walk in a weighted directed graph. Random
walks in undirected graphs have many nice properties and a number of applications. They are also
closely related to reversible Markov chains.

Suppose G = (V,E) is an undirected graph. We let G⃗ = (V, E⃗) be the corresponding bidirected
graph.

We can consider weights on the edges, but for simplicity we assume all are 1 (we allow multi-
graphs).

1.1 Definition of Random Walk

A random walk on G is the following stochastic process: Start at some random vertex given by a
probability distribution π0 on V . In each step, if we are at vertex v, pick a uniform random edge
in δ(v) and go to the endpoint of v.

Note that if the edge is a self-loop, we stay at v.
We can think of this random walk as a Markov chain on V where each edge (v, u) is given

probability 1
d(v) .

Lemma 1. Suppose G is a loopless connected graph. Then G is aperiodic iff G is not bipartite.

Proof. If G is bipartite, the underlying chain has period 2, since all cycles and closed walks have
even length.

If G is not bipartite, G has an odd length cycle. In G⃗ we have that each vertex is in a closed
walk of even length and one with odd length. By gcd, the period is 1.

We can either assume G is not bipartite or add self-loops on each vertex and make the walk
lazy. This will ensure the walk is aperiodic (ergodic).

Lemma 2. A random walk on G converges to a stationary distribution π where π(v) = d(v)
2m .

Proof. Exercise: Verify that this satisfies πP = π for the underlying Markov chain.

1.2 Hitting Times and Commute Times

Let hu,v be the expected time to reach state v when starting at u.
Hitting time is not necessarily symmetric.
Example: Lollipop graph Ln: ha,b = Θ(n2) and hb,a = Θ(n).
Also, Ln shows that adding edges can increase hu,v and Cu,v.
Commute time is Cu,v = hu,v + hv,u, which is symmetric.
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1.3 Basic Results

We will prove two basic results using elementary methods.

Lemma 3. For any edge uv ∈ E: hu,v + hv,u ≤ 2m.

Proof. Consider: We can view the random walk on G as a random walk on E⃗. That is, the state
space is E⃗. Consider this claim.

Consider the transition matrix Q for this chain. It turns out to be doubly stochastic.
For a normal transition matrix, row sum is 1, but here column sum is also 1. Easy to verify:

(1, 1, . . . , 1)T is a left eigenvector of Q. By normalizing, the stationary distribution of Q is 1
2m , the

uniform distribution.
hu,v + hv,u ≤ 2m where h(u,v),(u,v) is the expected time in the edge walk chain to start on edge

(u, v) and revisit (u, v). We can interpret such a walk as giving an upper bound on hu,v + hv,u.
Claim: hu,v + hv,u ≤ 2m. If the original random walk traversed the edge (u, v), then the

expected time to traverse (u, v) again is 2m.
Note: Since the original walk is memoryless, once it reaches v, it shows that the expected time

to visit u and take edge (u, v) is at most 2m.
But this walk is only one way to start at v and reach u and back to v: hv,u + hu,v ≤ 2m.

Caveat: Note the above holds only for u, v ∈ E. We will later see a more refined version when
(u, v) is not necessarily an edge.

1.4 Cover Time

Definition 1. The cover time of a graph G = (V,E) is the max over all v ∈ V of the expected
time to visit all the vertices. C(v) is cover time starting at v. C(G) = maxv C(v).

Theorem 1. C(G) ≤ 2m(n− 1).

Proof. Consider a spanning tree T of G.
We can consider an Eulerian walk on T . Say it is v1, v2, v3, . . . , v2n−2, v1.
We can upper bound C(v1) by:

hv1,v2 + hv2,v3 + · · ·+ hv2n−2,v1 =
∑

uv∈E(T )

(hu,v + hv,u) ≤ 2m(n− 1).

One can prove another interesting upper bound on cover time:

Theorem 2. C(G) ≤ (n− 1)maxu,v∈V hu,v.

2 Applications

2.1 s-t Connectivity in O(log n) Space

Suppose we are given an undirected graph written on read-only memory in adjacency list/matrix
format. We want to use very little extra memory to decide if some given s can reach t. We can
easily do this using O(n) space by using graph search (BFS/DFS).

Can we do this with O(log n) space? Note that writing s or t takes O(log n) bits.
Yes, if we allow randomization!
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How: Start a random walk at s. Because C(G) = O(mn), if we don’t see t after O(mn log n)
steps, we know w.h.p. that s is not connected to t.

Can implement random walk in O(log n) space.
G can be bipartite, so need to use lazy random walk. Doesn’t change details too much.

2.2 2-SAT

2-SAT: Given a Boolean formula ϕ = C1 ∧C2 ∧ · · · ∧Cm where each clause has exactly 2 variables.
Can check if ϕ is satisfiable, e.g., ϕ = (x5 ∨ x3) ∧ (x1 ∨ x̄2) ∧ (x̄3 ∨ x7).

2-SAT is solvable in P. How? One nice way to see it is via random walks.
Algorithm:

1. Let a = (a1, a2, . . . , an) ∈ {0, 1}n be an arbitrary assignment to xi.

2. While a does not satisfy ϕ do:

• Let Ci be an arbitrary clause that is not satisfied by a.

• Pick a literal of Ci uniformly at random.

• Flip the assignment for the chosen literal and update a.

Lemma 4. If ϕ is satisfiable, the algorithm terminates in O(n2) steps.

Proof. Suppose s is a fixed satisfying assignment. Let at be the assignment after t steps. Let
dt = dist(s, at) be the Hamming distance between s and at. That is, the number of variables in
which at differs from s.

If dt = 0 then algorithm terminates.
The algorithm can be viewed as doing a random walk on state space {0, 1, 2, . . . , n} and starting

at position dist(s, a0).
Since only one variable is changed, distance changes by +1 or −1.
Since Ci is picked as an unsatisfied clause, at least one literal is incorrect, and hence with

probability at least 1
2 we will reduce distance.

Thus we can view this as a walk on {0, 1, 2, . . . , n}. In the worst case, it starts at n on each
side. Can view it as a random walk on a finite line.

Cover time of line is O(n2); will visit 0 in O(n2) in expectation.

3 Electrical Networks and Random Walks

Ohm’s law: V = IR (voltage = current × resistance).
For resistors in series: effective resistance is R = R1 +R2.
For resistors in parallel: effective resistance is R = R1R2

R1+R2
.

Let Ru,v be effective resistance between u and v.

Theorem 3. Cu,v = hu,v + hv,u = 2m ·Ru,v.

Corollary 1. If uv ∈ E, then Cu,v ≤ 2m.
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