Lecture 14: Random Walks in Undirected Graphs

1 Random Walks in Undirected Graphs

A finite state Markov chain corresponds to a random walk in a weighted directed graph. Random
walks in undirected graphs have many nice properties and a number of applications. They are also
closely related to reversible Markov chains.

Suppose G = (V, E) is an undirected graph. We let G= (V, E) be the corresponding bidirected
graph.

We can consider weights on the edges, but for simplicity we assume all are 1 (we allow multi-
graphs).

1.1 Definition of Random Walk

A random walk on G is the following stochastic process: Start at some random vertex given by a
probability distribution 7wy on V. In each step, if we are at vertex v, pick a uniform random edge
in §(v) and go to the endpoint of v.

Note that if the edge is a self-loop, we stay at v.

We can think of this random walk as a Markov chain on V where each edge (v,u) is given

probability ﬁ.

Lemma 1. Suppose G is a loopless connected graph. Then G is aperiodic iff G is not bipartite.

Proof. If G is bipartite, the underlying chain has period 2, since all cycles and closed walks have
even length.

If G is not bipartite, G has an odd length cycle. In G we have that each vertex is in a closed
walk of even length and one with odd length. By ged, the period is 1. O

We can either assume G is not bipartite or add self-loops on each vertex and make the walk
lazy. This will ensure the walk is aperiodic (ergodic).

Lemma 2. A random walk on G converges to a stationary distribution ™ where m(v) = d;—:}

Proof. Exercise: Verify that this satisfies 7P = 7 for the underlying Markov chain. O

1.2 Hitting Times and Commute Times

Let h,, be the expected time to reach state v when starting at u.
Hitting time is not necessarily symmetric.
Example: Lollipop graph Ly,: h,p = ©(n?) and hy, = O(n).
Also, L, shows that adding edges can increase h,,, and Cy.
Commute time is Cy», = hy,p + hy,u, Which is symmetric.



1.3 Basic Results

We will prove two basic results using elementary methods.
Lemma 3. For any edge uv € E: hyy + hyu < 2m.

Proof. Consider: We can view the random walk on G as a random walk on E. That is, the state
space is E. Consider this claim.

Consider the transition matrix @) for this chain. It turns out to be doubly stochastic.

For a normal transition matrix, row sum is 1, but here column sum is also 1. Easy to verify:
(1,1,...,1)T is a left eigenvector of Q. By normalizing, the stationary distribution of Q is ﬁ, the
uniform distribution.

huw + by < 2m where Ay o) (u,0) 18 the expected time in the edge walk chain to start on edge
(u,v) and revisit (u,v). We can interpret such a walk as giving an upper bound on Ay, + hy -

Claim: hyy + hyu < 2m. If the original random walk traversed the edge (u,v), then the
expected time to traverse (u,v) again is 2m.

Note: Since the original walk is memoryless, once it reaches v, it shows that the expected time
to visit u and take edge (u,v) is at most 2m.

But this walk is only one way to start at v and reach u and back to v: hy 4 + by < 2m. ]

Caveat: Note the above holds only for u,v € E. We will later see a more refined version when
(u,v) is not necessarily an edge.

1.4 Cover Time

Definition 1. The cover time of a graph G = (V, E) is the max over all v € V of the expected
time to visit all the vertices. C'(v) is cover time starting at v. C(G) = max, C(v).

Theorem 1. C(G) < 2m(n —1).

Proof. Consider a spanning tree T" of G.
We can consider an Eulerian walk on T'. Say it is v1,v9,vs, ..., Von_9, V1.
We can upper bound C(v;) by:

Pvi s + Pogws + -+ By g0 = Z (hup + hou) < 2m(n —1).
weE(T)

One can prove another interesting upper bound on cover time:

Theorem 2. C(G) < (n — 1) maxy yey Rup-

2 Applications

2.1 s-t Connectivity in O(logn) Space

Suppose we are given an undirected graph written on read-only memory in adjacency list/matrix
format. We want to use very little extra memory to decide if some given s can reach t. We can
easily do this using O(n) space by using graph search (BFS/DFS).

Can we do this with O(logn) space? Note that writing s or ¢ takes O(logn) bits.

Yes, if we allow randomization!



How: Start a random walk at s. Because C(G) = O(mn), if we don’t see ¢ after O(mnlogn)
steps, we know w.h.p. that s is not connected to .

Can implement random walk in O(logn) space.

G can be bipartite, so need to use lazy random walk. Doesn’t change details too much.

2.2 2-SAT

2-SAT: Given a Boolean formula ¢ = C; ACy A --- A C,,, where each clause has exactly 2 variables.
Can check if ¢ is satisfiable, e.g., ¢ = (x5 V 23) A (21 V T2) A (T3 V 7).

2-SAT is solvable in P. How? One nice way to see it is via random walks.

Algorithm:

1. Let a = (ay,as,...,a,) € {0,1}" be an arbitrary assignment to z;.
2. While a does not satisfy ¢ do:

e Let C; be an arbitrary clause that is not satisfied by a.
e Pick a literal of C; uniformly at random.

e Flip the assignment for the chosen literal and update a.
Lemma 4. If ¢ is satisfiable, the algorithm terminates in O(n?) steps.

Proof. Suppose s is a fixed satisfying assignment. Let a' be the assignment after t steps. Let
d; = dist(s,a’) be the Hamming distance between s and a’. That is, the number of variables in
which a! differs from s.

If d; = 0 then algorithm terminates.

The algorithm can be viewed as doing a random walk on state space {0,1,2,...,n} and starting
at position dist(s, a").

Since only one variable is changed, distance changes by +1 or —1.

Since C; is picked as an unsatisfied clause, at least one literal is incorrect, and hence with
probability at least % we will reduce distance.

Thus we can view this as a walk on {0,1,2,...,n}. In the worst case, it starts at n on each
side. Can view it as a random walk on a finite line.
Cover time of line is O(n?); will visit 0 in O(n?) in expectation. O

3 Electrical Networks and Random Walks

Ohm'’s law: V = IR (voltage = current x resistance).
For resistors in series: effective resistance is R = Ry + Ro.
For resistors in parallel: effective resistance is R =
Let R, , be effective resistance between v and v.

Theorem 3. Cyy = hyp + hyy =2m - Ry,.

Corollary 1. If uv € E, then Cy, < 2m.



