
Lecture 13: Markov Chains and Random Walks

October 8, 2025

1 Introduction

A stochastic process is a time-evolving sequence of random variables: X0, X1, X2, . . . , Xt, . . .
where Xt is the state of the system at time t and X0 is the initial state (which can itself be a
random one). One can view it also as an evolving randomized algorithm. A Markovian process
or a Markov chain is a particular type of stochastic process where Xt depends only on Xt−1. To
formalize this, we assume that X0, X1, . . . are random variables over some state space Ω.

Definition 1. A stochastic process is Markovian if:

Pr[Xt = ut | Xt−1 = ui−1, Xt−2 = ut−2, . . . , X0 = u0] = Pr[Xt = ut | Xt−1 = ut−1]

We will be mostly concerned with finite state Markov chains, although countable state chains are
also quite relevant. A finite state Markov chain is easy to visualize as a directed graph G = (V,E)
with non-negative edge-weights. Note that we allow self-loops.

• V represents the states. We usually use n for |V | and assume the states are numbered 1 to n.

• For state (vertex) i, the weighted outgoing edges from i represent the probability with which
state j is reached from state i in one step. Thus the weight of the edge p(i, j) ∈ [0, 1]. If no
edge (i, j) is present, then the probability is implicitly 0.

• Self-loops are allowed since we want to allow the process to remain in the same state.

We associate an n× n probability transition matrix P with an n-state Markov chain:

Pij = Pr[Xt = j | Xt−1 = i]

Clearly we need: ∑
j∈[n]

Pij = 1 ∀i ∈ [n]

and Pij ≥ 0.
The advantage of the graphical representation is that it allows us to understand the properties

of the chain via graph-theoretical aspects.
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Evolution of the Process: Suppose π(0) is an initial probability distribution over the state
space V . How does the process evolve? This is the central question in Markov chains. We
represent probability distributions over the states by n-dimensional row vectors. We let πi denote
the probability of being in state i. Suppose we start with π(0) as the starting distribution (can be
deterministic in that we have π(0)i = 1 for some fixed vertex i). Then it is not difficult to see that
after one step the distribution is:

π(1) = π(0)P

since Pr[X1 = j] =
∑

i Pr[X0 = i]Pij due to the Markovian property. After t steps, we see by
induction that:

π(t) = π(0)P t

We want to understand properties of the chain as it evolves and in particular the long-term
behaviour of the chain. A central result in the theory is that the process converges to a stable
stationary distribution under reasonable conditions. These conditions are natural and relatively
easy to understand from a graph-theoretic viewpoint.

Transient states and irreducability: Suppose G is not strongly connected. Then it is not
hard to see that the process will get stuck in a sink component of the underlying meta-graph (i.e.,
the strongly connected component graph). There could be multiple such sink components and
the process will reach one of them and will not leave. Thus any state that is not in one of those
sink components is going to be transient. Thus, for understanding long-term behaviour it suffices
to focus on strongly connected chains (sometimes we simply say connected). This motivates the
following:

Definition 2. A Markov chain is irreducible if the underlying graph is strongly connected.

If a chain is irreducible then any state i can reach any other state j with some probability ε > 0
since there is an i to j path with non-zero probabilities on each of the edges. We can then prove
the following.

Lemma 1. Let hij be the expected time to hit state j for the first time starting in state i; if j = i
we think of the first time when i is revisited. Then hij < 0.

Periodicity: A second issue that comes up is periodicity or oscillatory behaviour.

Definition 3 (Period). For a finite state Markov chain defined by a graph G = (V,E) and a state
i ∈ V , period(i) is the largest non-negative integer d such that d divides the length of any closed
walk containing i:

period(i) = gcd{|W | : W is a closed walk containing i}

Lemma 2. Suppose G is strongly connected. Then period(i) = period(j) for all i, j ∈ V .

Proof. Exercise.

The preceding lemma implies that there is a period d for a strongly connected graph.

Lemma 3. Suppose period is d ≥ 1. Then V can be partitioned into V0, V1, . . . , Vd−1 such that
(u, v) ∈ E implies u ∈ Vi and v ∈ V(i+1) mod d.

Definition 4. An irreducible finite state Markov chain is aperiodic if period d = 1.

Definition 5. An irreducible and aperiodic Markov chain is called ergodic.
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Lazy Random Walk Suppose we have a Markov chain which is irreducible but periodic. We
can make it aperiodic by adding a self-loop to each i and making i stay in state i with probability
p > 0 (say 1

2) and take the original transition with probability (1 − p). In other words, we are
changing the transition matrix from P to (1 − p)P + pI where I is the identity matrix. The new
walk is called a lazy version of the original walk and retains the essential properties.

An important and fundamental notion is the following.

Definition 6. A distribution π is a stationary distribution of a Markov chain with transition
matrix P if πP = π.

A stationary distribution is a stable distribution.

2 Fundamental Theorem of Markov Chains

Theorem 1. Suppose P corresponds to a finite state irreducible Markov chain. Then there exists
a unique stationary distribution π for it.

1. For any i, πi = 1
hii

where hii is the expected time for the chain to revisit i if started in i.

2. Let Ni(t) be the number of times the chain visits i in t steps. Then limt→∞
Ni(t)
t = πi.

Moreover if P is also aperiodic, and hence the chain is ergodic, for any starting distribution π(0),
limt→∞ π(0)P t = π.

2.1 Proof via Perron-Frobenius Theorem

Connection to eigenvalues: πP = π implies π is a left eigenvector of P with eigenvalue 1.
Thus, to prove existence of π we can try to do it via linear algebra. We are typically used to right
eigenvectors: If A is an n × n matrix, Ax = λx has a non-zero solution x iff λ is an eigenvalue
and x is a corresponding eigenvector. det(A − λI) is the characteristic polynomial; its roots are
eigenvalues. In general, eigenvalues need not be real. There are two well-known situations when A
has real eigenvalues.

• If A is symmetric, then all eigenvalues are real.

• If A is a symmetric positive semi-definite matrix then all eigenvalues are ≥ 0.

But P is not symmetric in the general case. However P is non-negative. Note that P1 = 1 since
P is a stochastic matrix and hence P has an eigenvalue of 1 and a right eigenvector which is the all
ones vector but we are looking for a left eigen vector. Note that for a matrix A the eigenvalues of
A and its transpose AT are the same (due to the characteristic polynomial characterization) and
the right eigenvectors of A are the left eigenvectors of AT .

Theorem 2 (Perron). Let A be a non-negative matrix (i.e., Aij ≥ 0 for all i, j). Then:

1. A has a real positive eigenvalue λ0 > 0 and corresponding positive eigenvector v > 0 such
that any other eigenvalue λ (can be complex) satisfies |λ| < λ0; hence λ0 is the unique largest
eigenvalue.

2. v is the unique non-negative vector (up to scaling) such that Av = λ0v.

3. Every other eigenvector has at least one non-positive coordinate.
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Perron’s theorem requires A > 0 (strictly positive) while P for a Markov chain satisfies P ≥ 0.
Although one can derive properties for non-negative matrices via Perron’s theorem from limits
of positive matrices, there are subtelties for general non-negative matrices. Frobenius generalized
Perron’s theorem to a class of matrices including ones relevant to us.

Definition 7. A is an n×n matrix with A ≥ 0 (i.e., Aij ≥ 0 for all i, j). We say A is irreducible
if the corresponding weighted directed graph is strongly connected.

Theorem 3 (Perron-Frobenius). Let A ≥ 0 and irreducible. Then A has a positive eigenvalue
λ0 > 0 and all other eigenvalues λ satisfy |λ| ≤ λ0. There is a positive eigenvector v > 0 such that
Av = λ0v, and the following hold for λ0 and v:

1. v is the unique eigenvector associated with λ0. That is, if Ax = λ0x, then x = αv for some
scalar α ≥ 0.

2. v is the only eigenvector with strictly positive coordinates.

Corollary 1. The largest real eigenvalue of an irreducible matrix A ≥ 0 has a positive left eigen-
vector π. π is unique up to scaling and is the only non-zero vector that satisfies πA = λ0π.

Proof. Consider AT . AT ≥ 0 and irreducible. AT has same eigenvalues as A. π is the right
eigenvector of AT .

Now we can apply the preceding to Markov chains. Consider stochastic matrix P from an
irreducible Markov chain: We saw that λ = 1 is a eigenvalue since P1 = 1. Since P is stochastic we
can see that Ax ≤ x and hence 1 is the largest positive real eigenvalue. Thus the left eigenvector
π > 0 corresponding to the eigenvalue 1 is unique by the preceding theorem/corollary. If π > 0 we
can noramalize it to be a probability distribution. Uniqueness of π follows from the fact that the
eigenvector for λ = 1 is unique up to scaling.

Periodic and aperiodic chains: We established existence of a stationary distribution via irre-
ducability. When we have aperiodicity we can prove a stronger property. For this we note that if
P is aperiodic and connected then for some sufficiently large t, P t > 0. This is because if the gcd
of the walk lengths in G is 1 then there is some integer K such that for all t ≥ K, there is a walk
of length t from i to j for any i, j. This implies that P t > 0. Such matrices are called primitive.
When P t is strictly positive we can use Perron’s theorem which is stronger and guarantees that all
eigen values are strictly smaller than λ0 (they could be complex). One can then use this gap to
show that π(0)P t converges to π as t→∞.

Perron’s theorem is classical and there are many sources. See Kents notes for one. It is not
that long.

2.2 A second proof

This is from the book by Blum, Hopcroft, Kannan.
Let πt be the distribution after t steps starting with π(0). We have π(t) = π(0)P t

Define a(t) = 1
t+1(π(0) + π(1) + · · · + π(t − 1)) be the time-averaged distribution. Note that

this is also a probability distribution.

Theorem 4. Let G be an irreducible Markov chain. There is a unique probability distribution π
such that πP = π. Moreover, for any starting distribution, limt→∞ a(t) exists and equals π.
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Lemma 4. Let P be the transition matrix of a connected Markov chain. The matrix A = [P−I | 1]
obtained by augmenting P − I by an all-ones column has rank n.

Proof. Note that A is a n × (n + 1) matrix. Suppose rank(A) < n. Then let S be the null space
of A, i.e., S = {y ∈ Rn+1 : Ay = 0}. Then dim(S) ≥ 2. Each row of P sums to 1, so each row of
P − I sums to 0. Thus (1, 0) ∈ S. If dim(S) ≥ 2, there exists a vector (x, α) ∈ S orthogonal to
(1, 0).

Orthogonality implies
∑

i xi = 0. Since A · (x, α) = 0, we have (P − I)x = α1. This means
xi =

∑
j Pijxj + α for each i ∈ [n].

Let xk have the max value among x1, x2, . . . , xn. Some ` 6= k has x` < xk since
∑

i xi = 0 and
x 6= 0. By connectedness of G, there exists some ` such that (k, `) is an edge and x` < xk. But we
have xk =

∑
j Pkjxj + α which implies that α > 0. Similarly, by considering the min value among

x1, x2, . . . , xn we can derive that α < 0. This is a contradiction.

Consider a(t)P − a(t).

a(t)P − a(t) =
1

t
(π(0)P + π(1)P + . . .+ π(t− 1)P )− a(t)

=
1

t
(π(1) + π(2) + . . .+ π(t))− 1

t
(π(0) + . . .+ π(t− 1))

=
1

t
(π(t)− π(0))

Define b(t) = a(t)(P − I) = 1
t (π(t)− π(0)). Then ‖b(t)‖∞ ≤ 2

t → 0 as t→∞.
By the preceding lemma, A = [P − I | 1] has rank n. Since a(t)(P − I) = b(t), we have

a(t)[P − I | 1] = [b(t) | 1]. Consider the n × n sub-matrix B of A obtained by ignoring the first
column of A; B has rank n. Let c(t) be obtained from b(t) by removing the first entry. Then
a(t)B = [c(t, 1]. Since B is invertible, we have a(t) = [c(t), 1]B−1. Since b(t)→ 0, we have c(t)→ 0
and hence a(t)→ [0, 1]B−1.

Thus, limt→∞ a(t) = π where π = [0, 1]B−1. π is unique because we showed that starting with
any distribution π0, a(t) converges to π. If there existed another stationary distribution π′, then
starting at π′ we would have a(t) = π′ for all t.

A useful lemma is the following.

Lemma 5. Suppose P corresponds to an irreducible chain. If we have a distribution π such that
πiPij = πjPji for all i, j, then πP = π.

Proof. Exercise.

2.3 Another Proof

This is from the Levin-Peres book.
For i ∈ V , define:

τi = min{t ≥ 0 : Xt = i}
as the first hitting time for i, and

τ+i = min{t ≥ 1 : Xt = i}

which is the first hitting time not counting the initial state.
When X0 = i, we call τ+i the first return time. The expected value hij = Ei[τ

+
j ] is the expected

time to reach j starting at X0 = i. In the rest of this section we will be interested in various
quantities conditioned on X0 = i. We use Ei and Pri to denote these quantities.
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Lemma 6. For any states i, j of an irreducible chain, hij = Ei[τ
+
j ] <∞.

Proof. Since the chain is strongly connected and Pij > 0 for (i, j) ∈ E, there exists ε > 0 and an
integer r such that for any two states u, v, Pru[X` = v] ≥ ε. This is because we can take a path of
length at most n from u to v and multiply the probabilities along that path to see that it is some
non-zero value.

Thus, for any value of Xt, the probability of hitting state j between t and t+ r is at least ε.
Hence, for k ≥ 0, we have:

Pr
i

[τj > kr] ≤ (1− ε) Pr
i

[τj > (k − 1)r]

Therefore:
Pr
i

[τj > kr] ≤ (1− ε)k

Now, if Z is a non-negative random variable:

E[Z] =

∞∑
t=0

Pr[Z > t]

We have Pr[τj > t] is a decreasing function of t. Hence:

Ei[τj ] =

∞∑
t=0

Pr
i

[τj > t]

≤
∞∑
k=0

rPr
i

[τj > kr]

≤ r
∞∑
k=0

(1− ε)k <∞

Existence of a stationary distribution: This proof has the nice feature that we can construct
the stationary distribution somewhat explicitly, which also implies that πi = 1

hii
for each i which

is intuitive.
Let k be an arbitrary state of the irreducible chain. For any i ∈ V , define:

π′i = Ek[number of visits to i before returning to k] =

∞∑
t=0

Pr
k

[Xt = i, τ+j > t]

Note that π′k = 1 by the above definition.

Lemma 7. Let π′ be defined as above. Then π′ satisfies π′P = π′ and π′/hkk is a stationary
distribution.

In particular it shows that π′k/hkk = 1/hkk. Note that the lemma applies for every k. It does
not directly prove that we get the same stationary distribution if we use different states k but if you
knew that the stationary distribution is unique then you would be able to conclude that πi = 1/hii
for all i.

Now we prove the lemma. For any i we have π′i ≤ hkk < ∞ (which we have established
previously). We will check that π′ is stationary. Fix state j. From definition of π′i,
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We have ∑
i

π′iP (i, j) =
∑
i

∞∑
t=0

Pr
k

[Xt = i, τ+k > t]P (i, j)

Since the event {τ+k ≥ t+ 1} = {τ+k > t} is determined by X0, . . . , Xt,

Pr
k

[Xt = i,Xt+1 = j, τ+k ≥ t+ 1] = Pr
k

[Xt = i, τ+k ≥ t+ 1]P (i, j)

Reversing the order of summation in the first equality and using the preceding identity we get

∑
i

π′iP (i, j) =
∞∑
t=0

Pr
k

[Xt+1 = j, τ+k ≥ t+ 1] =
∞∑
t=1

Pr
k

[Xt = j, τ+k ≥ t]

The expression
∑∞

t=1 Prk[Xt = j, τ+k ≥ t] is very similar to the definition of π′j and our goal is
to show that it is indeed the same which would verify the stationarity of π′.

∞∑
t=1

Pr
k

[Xt = j, τ+k ≥ t] = π′j − Pr
k

[X0 = j, τ+k ≥ 0] +
∞∑
t=1

Pr
k

[Xt = j, τ+k = t]

= π′j − Pr
k

[X0 = j] + Pr
k

[Xτ+k
= j]

= π′j

We want to justify the last inequality by considering two cases.

• j = k. Since X0 = k and Xτ+k
= k, the terms Prk[X0 = j] and Prk[Xτ+k

= j] are 1 and cancel
out.

• j 6= k. Both terms are 0.

Finally, to get a probability measure we normalize by
∑

i π
′
i = Ek[τ

+
k ] = hkk. Thus π = π′/hkk

is a stationary distribution.

3 Application to PageRank

The early approach of Google to rank web pages was based on using the link information that was
in the pages. This was done to avoid the deficiencies of previous approaches that were based on
manually classifying (Yahoo and AltaVista and others) and deficiencies of keyword search due to
spam and other reasons.

The web graph is a directed graph where each web page corresponds to a node in a graph (this
is a somewhat crude approximation) and a link in a page to another page creates a natural arc.
Links encode information that gives information on how important pages are. The goal is to create
a ranking of webpages globally; use ranking + query words later for personalized ranking.

How should one rank webpages in terms of importance? A simple approach is assign a score
based on how many other links point to a webpage. score(u) =

∑
v:(v,u)∈E 1 This is easy to spam.

A better approach is to score based on the importance of incoming pages:

score(u) =
∑

v:(v,u)∈E

score(v)

out-deg(v)
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This is a recursive definition. Main question: Does score(v) exist? Can normalize scores (since
scaling does not violate the equation). Assume

∑
u∈V xu = 1, so x is a probability distribution.

This looks like the stationary distribution of a random walk on the web graph! But the web graph
may not be ergodic.

The Brin-Page trick is to create an ergodic chain by considering a new graph H which is a
convex combination of the webgraph and a complete bipartite graph. Thus, if P is the matrix
corresponding to G and Q is the matrix corresponding to the complete directed graph on V we let

P ′ = (1− ε)P + εQ

This corresponding to a random walk where with probability ε, jump to a random webpage;
with probability 1 − ε, follow a random outgoing link of the web graph. P ′ corresponds to an
ergodic chain, so there exists a unique stationary distribution π for any fixed ε > 0. This π is the
ranking.

Computing PageRank: How to compute π? Use the power method: π(0)P t → π for any
π(0). Start with π(0) = 1

n1. Graph is sparse (average out-degree is 8-10), hence computation
is not onerous. Mostly matrix-vector multiplication and numerical linear algebra and the process
converges after a few iterations to a reasonable vector - note that the goal is not to actually compute
a stationary distribution but only to find a ranking.
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