
Lecture 12: DNF Counting, Unreliability Estimation, #P

October 3, 2025

1 Basic Estimation Framework

Suppose we have a finite universe U of N elements and S ⊆ U of n elements. We know N and can sample
uniformly at random from U . We want to estimate |S|.

We also assume that given x ∈ U , we can efficiently check if x ∈ S.
Basic Algorithm: We can estimate |S| by taking a sample X ∈ U and outputting N if X ∈ S and 0

otherwise. It is easy to see that this is an exact estimator for |S|, but variance is Θ(N2).
Thus, using our standard tricks, we can obtain an (ϵ, δ) approximation of |S| using O

(
1
ϵ2

)
samples.

Therefore, if n is not too large and we can sample from U uniformly, we can estimate |S|. The goal is
to see two nice applications of this simple idea and also introduce briefly the counting complexity class #P
defined by Valiant in his influential work.

Note: We can apply the above estimator even in the continuous setting where we have a probability
measure µ on U and we want to estimate µ(S).

2 #P and DNF Counting

A DNF formula over n boolean variables X1, X2, . . . , Xn is a formula

ϕ = C1 ∨ C2 ∨ · · · ∨ Cm

which is a disjunction (OR) of several clauses, each of which is a conjunction of a set of literals.
Example:

(X1 ∧ X̄3 ∧X5) ∨ (X2 ∧ X̄4 ∧X1 ∧X6)

Clearly any DNF formula is satisfiable. We want to count the number of satisfying assignments to ϕ. We
will denote it by |ϕ|. Exact counting is likely to be hard since it is Complete for the counting class #P.

However, we can get an (ϵ, δ) approximation in poly
(
m,n, 1

ϵ , log
1
δ

)
time.

2.1 Naive Approach

Let U be the set of 2n possible Boolean assignments to the variables. Let S be those that satisfy ϕ.
We can sample from U and it is easy to check if X ∈ S. Hence we can apply the basic scheme.

Unfortunately, |S|
|U | can be exponentially small. Hence this naive scheme does not work.

2.2 Refined Idea

Let Si be the set of all assignments that satisfy clause Ci.
We know |Si| and can also generate a uniform sample from Si easily.
How? If Ci = X1 ∧ X̄2 ∧ X5, then an assignment to the n variables satisfies Ci iff X1 = 1, X2 = 0,

X5 = 1. Thus |Si| = 2n−3. We can sample from Si uniformly as well.
We want to estimate |S| = |S1 ∪ S2 ∪ · · · ∪ Sm|. A satisfying truth assignment may appear in multiple

sets.
To use our basic set up of U and S, we do the following:

1

i. Let β ∈ S be a satisfying truth assignment. We let

U(β) = {(β, i) : β ∈ Si}.

In other words, we create a copy of β for each Si it belongs to.

ii. We map (β, i) to S if i is the smallest index such that β ∈ Si.

Now |U | =
∑

i |Si| and |S| = |ϕ|, and thus

|S|
|U |

=
|ϕ|∑
i |Si|

≥ 1

m
.

Sampling from U : We pick i ∈ [m] where probability of i appearing is |Si|
|U | . Once i is picked, we pick

a uniformly random β from Si. It is easy to see that this process generates a uniform element from U .
Checking membership in S: Given (β, i), we check if i is the smallest index such that β ∈ Si. If it is,

then we output it as an element from S.
Thus we can estimate |ϕ| to within a (1 ± ϵ) factor with high probability using O

(
m
ϵ2

)
samples. Each

sample can be generated and checked in poly time.

2.3 A Natural Example

Given shapes, want to estimate area of their union. If shapes are well behaved, can do exact computation
but expensive. Can obtain fast approximation generically. Only need to have information for each shape.

3 Unreliability of a Graph

Given undirected graph G = (V,E) and for each edge e ∈ E a value pe ∈ [0, 1], where pe is the probability
that e fails.

Suppose each edge fails independently with probability pe.
Let α be the probability that G is disconnected. This is the unreliability estimation problem.
We can also be interested in estimating 1 − α = β. Note that approximating α is not same as approxi-

mating β.
We will discuss estimating α.

3.1 Two Regimes of Interest

(i) Easy Case: α ≥ 1
c for some sufficiently large constant c.

This is easy because we can run the Monte Carlo Simulation with O
(

1
ϵ2 log

1
δ

)
experiments. We can

estimate α to within 1± ϵ with high probability.
(ii) Difficult Case: When α ≪ 1

c . This is when α is really small. Plain simulation will not work since
we will rarely if ever see G being disconnected.

We will address the above case in the rest of the lecture.

3.2 Analysis for Small α

For simplicity, we will assume pe = p for all e. One can reduce the general case to this but requires some
work.

Let K be the size of the min cut of G in terms of number of edges.
Let C1, C2, . . . , Ch be the cuts of G ordered in non-decreasing value. We treat each Ci as a set of edges.
Let Ai be the event that cut Ci fails. That is, all edges in Ci fail:

∏
e∈Ci

Xe where Xe = 1 with prob p.

Then Pr[Ai] = p|Ci|.
G is disconnected iff

⋃
i Ai.

If h was small (polynomially bounded) we could use previous ideas, but there are an exponential number
of cuts.

Since pe = p for all e and K ≤ |Ci|, we have Pr[Ai] ≤ Pr[Aj] if i ≤ j.

2

3.3 Main Observation

We are in the setting that p is quite small (failure prob).
Also α = Pr [

⋃
i Ai] ≥ Pr[A1] = pK .

Consider any cut Cj such that |Cj | ≥ 4K. Then

Pr[Aj] = p|Cj | ≤ p4K = (pK)4.

So large cuts are very unlikely to fail. But there are a lot of large cuts.
However, as we saw earlier, the number of β-approximate cuts is only growing as n2β .
Thus we can use union bound over all large cuts and still the total probability of them failing will be

tiny compared to Pr[A1]. So we can ignore all cuts j such that |Cj | ≥ 4K if we choose c appropriately.
This implies we can focus on cuts j such that K ≤ |Cj | ≤ 4K, but there are only O(n8) of those cuts

and we can run the basic estimation algorithm on these polynomially many cuts. Karger’s algorithm can be
used to enumerate all these cuts efficiently with high probability.

3.4 Formal Analysis

Lemma 1.
∑

j:|Cj |≥cK

Pr[Aj] ≤
α

100

Proof. Consider all cuts j such that K ≤ |Cj | ≤ cK for c ≥ 2. Let li be the number of such cuts with
|Cj | = i.

By Karger’s theorem, li ≤ n2i/K .
Also Pr[Aj] = pi for such Cj .

∑
j:|Cj |≥cK

Pr[Aj] ≤
|E|∑

i=cK

li · pi

≤
|E|∑

i=cK

n2i/K · pi

=

|E|∑
i=cK

(
n2/K · p

)i

≤
(
n2/K · p

)cK
1− n2/K · p

≤ α

100

for sufficiently large c.

Thus we can ignore all large cuts and do the estimation with the polynomial number of small cuts.
Note: The above analysis is quite loose. See cited notes for better calculations.

3

