Lecture 10

AMS estimator and estimation F,

Recall we want to estimate frequency moment Fy. Let o =eq,..., e, € [n]™.

n

by = Z(fz)k

i=1

We will consider a more abstract and general estimation problem. Let g; :
Z>o — R be a real valued function with g;(0) = 0. Say we want to estimate

n
g(o) = Zgi(fi)
i=1
Note that we are allowing different functions for different 4.

Fio = 3" () where g(x) = 2*.

i=1

Alon-Matias-Szegedy (AMS) in their influential paper provided an unbiased
estimator for computing g(o).

AMS-Estimator (g)

e Sample e; uniformly at random from stream. Say e; =i where i € [n].
o Let R={j | J <j<me; =il

e Output m - (g;(R) — g:(R — 1)).

Implementation via Reservoir Sampling

s < null

m <+ 0

R+ 0

while (stream is not empty)
m+—m+1

e, ¢ current item

If s==ey,) R« R+1
with prob %

S enm

R+1

end while

Output m - (g;(R) — g;(R — 1)) where s = i.



Analysis

Lemma: Let Y be the output of the algorithm. Then E[Y] = g(0).
Proof:

E[Y]=m)» E[Y|e; =1i]Prle; =i

i=1

Zf’ B[Yles = 1]
mzfz Zgz gz]_l)
Zm(fi)
=1

Thus we can use AMS estimator for I}, as well. But we need to understand
the variance of the estimator.
Lemma: For g(z) = 2, we have

Var(Y) < kFyFaop_y < kn'~ % F?
Proof: Var(Y) < E[Y?]
£

— Zpr[eJ —i. Z ”; (1% — (1 — 1))

2f7

~3L flz -
<F122klk Yak — (11— 1)k

=1 =1

S kFl Z fik_lfik

i=1

< kF1Foq
FiFy 1= (2, fb)(Z:‘L:l ) <l

since Var(Y) < kn'~% F2
and E[Y] = F.
Using median trick we can get an (e, §)-approximation in space O (k E%nl_ 3 log %)

1

EFkQ

Fy / F» estimation

For k = 2, we get (¢, 0)-approx in O( > log 6) space. Can we do better? For Fy,

AMS showed that polylog(n) suffices! For k > 2 the right bound is O(n!'~2/¥).
For 0 < k < 2 we can get O(Z log $polylog(n)).



AMS F, Estimation
e Choose h : [n] = {—1,1} from a 4-wise independent hash family H.
e 2+ 0

e while (stream is not empty)
e, 1s current element
24 z+ hlem)

e end while
e Output 22.

A 4-wise independent family can be stored via O(1)logn bit numbers.

Analysis

Let Y; = h(i). ElY;] =0, E[Y?)] =1. Y, € {-1,1}. Yi,...,Y, are 4-wise
independent. Z = "7 | f;Y;. Output is Z2.

n 2
<Z fm) Zf2Y2 +3 RV,
=1

i#£j

=Y FIENVA+ > fifiEY:Y;]

i=1 i#]
n
W
=1

Var(2%) = E[Z4] — (E[Z?])? = E|Z*%) — F2.

D22 D il f Yy
i3 ko1
Any term with only one occurrence of a term Y; becomes 0.

Zf4 Y4 +GZfo2 Y2Y2 Zf4+6z.f f2

=1 j=i+1 i<j

n 2
Var(Z?) = Zf4+62 Z J217 - <fo>
i=1

i=1 j=i+1

1<J 1<j

=4Zf3ffs2(2f?) = 2F}

i<j



An (e, §)-approximation requires O(Ei2 log %) counters. We make an observation
that non-negativity of f; did not play a role in the proof. This will lead us to a
generalization of the streaming model. Recall we had e; € [n] for each time ¢.
Now we have e; = (¢, A¢) where i; € [n] and A, is an update to coordinate ;.
We use x € R" that starts at 0 and is updated as
T, = x4, + Dy
after e;. Now Fy becomes ||z||3. We see that the AMS-F, estimator works in
this model.

AMS F, Estimation (Generalized)
e Choose h : [n] — {—1,1} from a 4-wise independent hash family H.

e 2+ 0

e while (stream is not empty)
er < (it, At)

end while

Output 22.

Exercise: Show E[Z?] = ||z||3 and Var(Z?) < 2||z|5. ||z||3 is the length of
the vector z.

Should remind you of dimensionality reduction! Interpreting AMS-F5 esti-
mator as a linear sketch. We can view the streaming computation as

1
T2

Il
IS

(+1 -1 41 ... —1)
Tn

where the row vector is obtained from h.

Recall that in dimensionality reduction we picked a k x n matrix A where we
chose A;; as an independent Gaussian. In F, estimation we are picking A where
each row of A is obtained from a 4-wise independent hash function with entries
in {—1,+1}. In dimensionality reduction we chose k = ©(Z% log +) and showed
that HﬁAl’Hg is an (e, §)-approximation to ||z||2. But in F5 estimation we seem

to be getting the same! @(}2 log %) rows suffice to get an e-approximation with
probability (1 — ). But we are only using 4-wise independence in each row.
Why not use this for dimensionality reduction?

The difference is the following. Az with k = ©(Z% log §) has sufficient infor-
mation to recover a (1 + €)-approximation for ||z||2 but ||Az||2 is itself not the
way we compute the approximation. We use a median estimator which is not a



linear function. Nevertheless the information that the algorithm computes is a
linear sketch, Ax.

A sketch of a data stream o is some function C(c) that is a compact
representation of 0. We want sketches to have comparability. Given oy
and oy and sketches C(o1) and C(o32), we would like to compute C(oy - 02)
from C(oy1) and C(o2). A particularly nice sketch is a linear sketch, where
C(o1 - 02) = C(o1) + C(o2).

The F5 estimation can be seen as a linear sketch.

< h1 — T
< hg — T

Az =
— hk, — T

Each row corresponds to a hash function. Note that the way we use the output of
the sketch to compute some information about the data can be some non-linear
function of the sketch itself. Linear sketches naturally allow for deletions.



