
Lecture 10

AMS estimator and estimation F2

Recall we want to estimate frequency moment Fk. Let σ = e1, . . . , em ∈ [n]m.

Fk =

n∑
i=1

(fi)
k

We will consider a more abstract and general estimation problem. Let gi :
Z≥0 → R be a real valued function with gi(0) = 0. Say we want to estimate

g(σ) =

n∑
i=1

gi(fi)

Note that we are allowing different functions for different i.

Fk =

n∑
i=1

g(fi) where g(x) = xk.

Alon-Matias-Szegedy (AMS) in their influential paper provided an unbiased
estimator for computing g(σ).

AMS-Estimator (g)

• Sample eJ uniformly at random from stream. Say eJ = i where i ∈ [n].

• Let R = |{j | J ≤ j ≤ m, ej = i}|.

• Output m · (gi(R)− gi(R− 1)).

Implementation via Reservoir Sampling

s← null
m← 0
R← 0
while (stream is not empty)
m← m+ 1
em ← current item
If (s == em) R← R+ 1
with prob 1

m
s← em
R← 1
end while
Output m · (gi(R)− gi(R− 1)) where s = i.
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Analysis

Lemma: Let Y be the output of the algorithm. Then E[Y ] = g(σ).
Proof:

E[Y ] = m

n∑
i=1

E[Y |eJ = i] Pr[eJ = i]

= m

n∑
i=1

fi
m
E[Y |eJ = i]

= m

n∑
i=1

fi
m
·

fi∑
j=1

gi(j)− gi(j − 1)

fi

=

n∑
i=1

gi(fi)

Thus we can use AMS estimator for Fk as well. But we need to understand
the variance of the estimator.

Lemma: For g(x) = xk, we have

V ar(Y ) ≤ kF1F2k−1 ≤ kn1− 1
kF 2

k

Proof: V ar(Y ) ≤ E[Y 2]

E[Y 2] =

n∑
i=1

Pr[eJ = i] ·
fi∑
l=1

m2

fi
(lk − (l − 1)k)2

≈
n∑

i=1

fi
m
· m

2

fi

fi∑
l=1

(lk − (l − 1)k)2

≤ F1

n∑
i=1

fi∑
l=1

klk−1(lk − (l − 1)k)

≤ kF1

n∑
i=1

fk−1
i fk

i

≤ kF1F2k−1

F1F2k−1 = (
∑n

i=1 fi)(
∑n

i=1 f
2k−1
i ) ≤ n1− 1

kF 2
k

since V ar(Y ) ≤ kn1− 1
kF 2

k

and E[Y ] = Fk.

Using median trick we can get an (ϵ, δ)-approximation in spaceO(k 1
ϵ2n

1− 1
k log 1

δ ).

Fk / F2 estimation

For k = 2, we get (ϵ, δ)-approx in Õ(
√
n

ϵ2 log 1
δ ) space. Can we do better? For F2,

AMS showed that polylog(n) suffices! For k > 2 the right bound is Õ(n1−2/k).
For 0 < k ≤ 2 we can get O( 1

ϵ2 log
1
δpolylog(n)).
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AMS F2 Estimation

• Choose h : [n]→ {−1, 1} from a 4-wise independent hash family H.

• z ← 0

• while (stream is not empty)
em is current element
z ← z + h(em)

• end while

• Output z2.

A 4-wise independent family can be stored via O(1) log n bit numbers.

Analysis

Let Yi = h(i). E[Yi] = 0, E[Y 2
i ] = 1. Yi ∈ {−1, 1}. Y1, . . . , Yn are 4-wise

independent. Z =
∑n

i=1 fiYi. Output is Z2.

E[Z2] = E

( n∑
i=1

fiYi

)2
 = E

∑
i

f2
i Y

2
i +

∑
i ̸=j

fifjYiYj


=

n∑
i=1

f2
i E[Y 2

i ] +
∑
i ̸=j

fifjE[YiYj ]

=

n∑
i=1

f2
i = F2

V ar(Z2) = E[Z4]− (E[Z2])2 = E[Z4]− F 2
2 .

E[Z4] = E

∑
i

∑
j

∑
k

∑
l

fifjfkflYiYjYkYl


Any term with only one occurrence of a term Yi becomes 0.

E[Z4] =

n∑
i=1

f4
i E[Y 4

i ] + 6

n∑
i=1

n∑
j=i+1

f2
i f

2
j E[Y 2

i Y
2
j ] =

n∑
i=1

f4
i + 6

∑
i<j

f2
i f

2
j

V ar(Z2) =

n∑
i=1

f4
i + 6

n∑
i=1

n∑
j=i+1

f2
i f

2
j −

(
n∑

i=1

f2
i

)2

=

n∑
i=1

f4
i + 6

∑
i<j

f2
i f

2
j −

 n∑
i=1

f4
i + 2

∑
i<j

f2
i f

2
j


= 4

∑
i<j

f2
i f

2
j ≤ 2

(∑
f2
i

)2
= 2F 2

2
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An (ϵ, δ)-approximation requires O( 1
ϵ2 log

1
δ ) counters. We make an observation

that non-negativity of fi did not play a role in the proof. This will lead us to a
generalization of the streaming model. Recall we had et ∈ [n] for each time t.
Now we have et = (it,∆t) where it ∈ [n] and ∆t is an update to coordinate it.

We use x ∈ Rn that starts at 0⃗ and is updated as

xit = xit +∆t

after et. Now F2 becomes ||x||22. We see that the AMS-F2 estimator works in
this model.

AMS F2 Estimation (Generalized)

• Choose h : [n]→ {−1, 1} from a 4-wise independent hash family H.

• z ← 0

• while (stream is not empty)
et ← (it,∆t)
z ← z +∆th(it)

• end while

• Output z2.

Exercise: Show E[Z2] = ||x||22 and V ar(Z2) ≤ 2||x||42. ||x||22 is the length of
the vector x.

Should remind you of dimensionality reduction! Interpreting AMS-F2 esti-
mator as a linear sketch. We can view the streaming computation as

(
+1 −1 +1 . . . −1

)

x1

x2

...
xn

 = z

where the row vector is obtained from h.
Recall that in dimensionality reduction we picked a k×n matrix A where we

chose Aij as an independent Gaussian. In F2 estimation we are picking A where
each row of A is obtained from a 4-wise independent hash function with entries
in {−1,+1}. In dimensionality reduction we chose k = Θ( 1

ϵ2 log
1
δ ) and showed

that || 1√
k
Ax||2 is an (ϵ, δ)-approximation to ||x||2. But in F2 estimation we seem

to be getting the same! Θ( 1
ϵ2 log

1
δ ) rows suffice to get an ϵ-approximation with

probability (1 − δ). But we are only using 4-wise independence in each row.
Why not use this for dimensionality reduction?

The difference is the following. Ax with k = Θ( 1
ϵ2 log

1
δ ) has sufficient infor-

mation to recover a (1± ϵ)-approximation for ||x||2 but ||Ax||2 is itself not the
way we compute the approximation. We use a median estimator which is not a
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linear function. Nevertheless the information that the algorithm computes is a
linear sketch, Ax.

A sketch of a data stream σ is some function C(σ) that is a compact
representation of σ. We want sketches to have comparability. Given σ1

and σ2 and sketches C(σ1) and C(σ2), we would like to compute C(σ1 · σ2)
from C(σ1) and C(σ2). A particularly nice sketch is a linear sketch, where
C(σ1 · σ2) = C(σ1) + C(σ2).

The F2 estimation can be seen as a linear sketch.

Ax =


←− h1 −→
←− h2 −→

...
←− hk −→



x1

x2

...
xn


Each row corresponds to a hash function. Note that the way we use the output of
the sketch to compute some information about the data can be some non-linear
function of the sketch itself. Linear sketches naturally allow for deletions.
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