Lecture 10

AMS estimator and estimation F_2

Recall we want to estimate frequency moment F_k . Let $\sigma = e_1, \ldots, e_m \in [n]^m$.

$$F_k = \sum_{i=1}^n (f_i)^k$$

We will consider a more abstract and general estimation problem. Let g_i : $\mathbb{Z}_{\geq 0} \to \mathbb{R}$ be a real valued function with $g_i(0) = 0$. Say we want to estimate

$$g(\sigma) = \sum_{i=1}^{n} g_i(f_i)$$

Note that we are allowing different functions for different i.

$$F_k = \sum_{i=1}^n g(f_i)$$
 where $g(x) = x^k$.

Alon-Matias-Szegedy (AMS) in their influential paper provided an unbiased estimator for computing $g(\sigma)$.

AMS-Estimator (g)

- Sample e_J uniformly at random from stream. Say $e_J = i$ where $i \in [n]$.
- Let $R = |\{j \mid J \le j \le m, e_j = i\}|$.
- Output $m \cdot (g_i(R) g_i(R-1))$.

Implementation via Reservoir Sampling

 $s \leftarrow \text{null}$ $m \leftarrow 0$

 $R \leftarrow 0$

while (stream is not empty)

 $m \leftarrow m+1$

 $e_m \leftarrow \text{current item}$

If $(s == e_m) R \leftarrow R + 1$ with prob $\frac{1}{m}$

 $s \leftarrow e_m$

 $R \leftarrow 1$

end while

Output $m \cdot (g_i(R) - g_i(R-1))$ where s = i.

Analysis

Lemma: Let Y be the output of the algorithm. Then $E[Y] = g(\sigma)$. **Proof:**

$$E[Y] = m \sum_{i=1}^{n} E[Y|e_{J} = i] \Pr[e_{J} = i]$$

$$= m \sum_{i=1}^{n} \frac{f_{i}}{m} E[Y|e_{J} = i]$$

$$= m \sum_{i=1}^{n} \frac{f_{i}}{m} \cdot \sum_{j=1}^{f_{i}} \frac{g_{i}(j) - g_{i}(j-1)}{f_{i}}$$

$$= \sum_{i=1}^{n} g_{i}(f_{i})$$

Thus we can use AMS estimator for \mathcal{F}_k as well. But we need to understand the variance of the estimator.

Lemma: For $g(x) = x^k$, we have

$$Var(Y) \le kF_1F_{2k-1} \le kn^{1-\frac{1}{k}}F_k^2$$

Proof: $Var(Y) \leq E[Y^2]$

$$E[Y^{2}] = \sum_{i=1}^{n} \Pr[e_{J} = i] \cdot \sum_{l=1}^{f_{i}} \frac{m^{2}}{f_{i}} (l^{k} - (l-1)^{k})^{2}$$

$$\approx \sum_{i=1}^{n} \frac{f_{i}}{m} \cdot \frac{m^{2}}{f_{i}} \sum_{l=1}^{f_{i}} (l^{k} - (l-1)^{k})^{2}$$

$$\leq F_{1} \sum_{i=1}^{n} \sum_{l=1}^{f_{i}} k l^{k-1} (l^{k} - (l-1)^{k})$$

$$\leq k F_{1} \sum_{i=1}^{n} f_{i}^{k-1} f_{i}^{k}$$

$$\leq k F_{1} F_{2k-1}$$

 $F_1 F_{2k-1} = (\sum_{i=1}^n f_i) (\sum_{i=1}^n f_i^{2k-1}) \le n^{1-\frac{1}{k}} F_k^2$ since $Var(Y) \le k n^{1-\frac{1}{k}} F_k^2$ and $E[Y] = F_k$.

Using median trick we can get an (ϵ, δ) -approximation in space $O(k \frac{1}{\epsilon^2} n^{1 - \frac{1}{k}} \log \frac{1}{\delta})$.

F_k / F_2 estimation

For k=2, we get (ϵ, δ) -approx in $\tilde{O}(\frac{\sqrt{n}}{\epsilon^2}\log\frac{1}{\delta})$ space. Can we do better? For F_2 , AMS showed that polylog(n) suffices! For k>2 the right bound is $\tilde{O}(n^{1-2/k})$. For $0< k \leq 2$ we can get $O(\frac{1}{\epsilon^2}\log\frac{1}{\delta}polylog(n))$.

AMS F_2 Estimation

- Choose $h:[n] \to \{-1,1\}$ from a 4-wise independent hash family H.
- $z \leftarrow 0$
- while (stream is not empty) e_m is current element $z \leftarrow z + h(e_m)$
- end while
- Output z^2 .

A 4-wise independent family can be stored via $O(1) \log n$ bit numbers.

Analysis

Let $Y_i = h(i)$. $E[Y_i] = 0$, $E[Y_i^2] = 1$. $Y_i \in \{-1, 1\}$. Y_1, \dots, Y_n are 4-wise independent. $Z = \sum_{i=1}^n f_i Y_i$. Output is Z^2 .

$$E[Z^{2}] = E\left[\left(\sum_{i=1}^{n} f_{i} Y_{i}\right)^{2}\right] = E\left[\sum_{i} f_{i}^{2} Y_{i}^{2} + \sum_{i \neq j} f_{i} f_{j} Y_{i} Y_{j}\right]$$

$$= \sum_{i=1}^{n} f_{i}^{2} E[Y_{i}^{2}] + \sum_{i \neq j} f_{i} f_{j} E[Y_{i} Y_{j}]$$

$$= \sum_{i=1}^{n} f_{i}^{2} = F_{2}$$

 $Var(Z^2) = E[Z^4] - (E[Z^2])^2 = E[Z^4] - F_2^2.$

$$E[Z^4] = E\left[\sum_i \sum_j \sum_k \sum_l f_i f_j f_k f_l Y_i Y_j Y_k Y_l\right]$$

Any term with only one occurrence of a term Y_i becomes 0.

$$E[Z^4] = \sum_{i=1}^n f_i^4 E[Y_i^4] + 6\sum_{i=1}^n \sum_{j=i+1}^n f_i^2 f_j^2 E[Y_i^2 Y_j^2] = \sum_{i=1}^n f_i^4 + 6\sum_{i < j} f_i^2 f_j^2$$

$$Var(Z^{2}) = \sum_{i=1}^{n} f_{i}^{4} + 6 \sum_{i=1}^{n} \sum_{j=i+1}^{n} f_{i}^{2} f_{j}^{2} - \left(\sum_{i=1}^{n} f_{i}^{2}\right)^{2}$$

$$= \sum_{i=1}^{n} f_{i}^{4} + 6 \sum_{i < j} f_{i}^{2} f_{j}^{2} - \left(\sum_{i=1}^{n} f_{i}^{4} + 2 \sum_{i < j} f_{i}^{2} f_{j}^{2}\right)$$

$$= 4 \sum_{i < j} f_{i}^{2} f_{j}^{2} \le 2 \left(\sum_{i=1}^{n} f_{i}^{2}\right)^{2} = 2F_{2}^{2}$$

An (ϵ, δ) -approximation requires $O(\frac{1}{\epsilon^2}\log\frac{1}{\delta})$ counters. We make an observation that non-negativity of f_i did not play a role in the proof. This will lead us to a generalization of the streaming model. Recall we had $e_t \in [n]$ for each time t. Now we have $e_t = (i_t, \Delta_t)$ where $i_t \in [n]$ and Δ_t is an update to coordinate i_t .

We use $x \in \mathbb{R}^n$ that starts at $\vec{0}$ and is updated as

$$x_{i_t} = x_{i_t} + \Delta_t$$

after e_t . Now F_2 becomes $||x||_2^2$. We see that the AMS- F_2 estimator works in this model.

AMS F_2 Estimation (Generalized)

- Choose $h:[n] \to \{-1,1\}$ from a 4-wise independent hash family H.
- $z \leftarrow 0$
- while (stream is not empty) $e_t \leftarrow (i_t, \Delta_t)$ $z \leftarrow z + \Delta_t h(i_t)$
- end while
- Output z^2 .

Exercise: Show $E[Z^2] = ||x||_2^2$ and $Var(Z^2) \le 2||x||_2^4$. $||x||_2^4$ is the length of the vector x.

Should remind you of dimensionality reduction! Interpreting AMS- F_2 estimator as a linear sketch. We can view the streaming computation as

$$\begin{pmatrix} +1 & -1 & +1 & \dots & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = z$$

where the row vector is obtained from h.

Recall that in dimensionality reduction we picked a $k \times n$ matrix A where we chose A_{ij} as an independent Gaussian. In F_2 estimation we are picking A where each row of A is obtained from a 4-wise independent hash function with entries in $\{-1,+1\}$. In dimensionality reduction we chose $k = \Theta(\frac{1}{\epsilon^2}\log\frac{1}{\delta})$ and showed that $||\frac{1}{\sqrt{k}}Ax||_2$ is an (ϵ,δ) -approximation to $||x||_2$. But in F_2 estimation we seem to be getting the same! $\Theta(\frac{1}{\epsilon^2}\log\frac{1}{\delta})$ rows suffice to get an ϵ -approximation with probability $(1-\delta)$. But we are only using 4-wise independence in each row. Why not use this for dimensionality reduction?

The difference is the following. Ax with $k = \Theta(\frac{1}{\epsilon^2} \log \frac{1}{\delta})$ has sufficient information to recover a $(1 \pm \epsilon)$ -approximation for $||x||_2$ but $||Ax||_2$ is itself not the way we compute the approximation. We use a median estimator which is not a

linear function. Nevertheless the information that the algorithm computes is a linear sketch, Ax.

A **sketch** of a data stream σ is some function $C(\sigma)$ that is a compact representation of σ . We want sketches to have **comparability**. Given σ_1 and σ_2 and sketches $C(\sigma_1)$ and $C(\sigma_2)$, we would like to compute $C(\sigma_1 \cdot \sigma_2)$ from $C(\sigma_1)$ and $C(\sigma_2)$. A particularly nice sketch is a **linear sketch**, where $C(\sigma_1 \cdot \sigma_2) = C(\sigma_1) + C(\sigma_2)$.

The F_2 estimation can be seen as a linear sketch.

$$Ax = \begin{pmatrix} \longleftarrow & h_1 & \longrightarrow \\ \longleftarrow & h_2 & \longrightarrow \\ & \vdots & \\ \longleftarrow & h_k & \longrightarrow \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

Each row corresponds to a hash function. Note that the way we use the output of the sketch to compute some information about the data can be some non-linear function of the sketch itself. Linear sketches naturally allow for deletions.