
Lecture Notes: Randomization in Algorithms

Lechière

August 27, 2025

1 Introduction

Randomization in algorithms is quite common these days, so a long introduction is not needed.

Definition 1. A randomized algorithm is one that has access to a true random number or random
bit generator and can use the numbers/bits to make decisions.

Historically, people have used random sampling in surveys and data collection. Most people credit
the Metropolis-Hastings algorithm for numerical integration and sampling as the first non-trivial use of
randomness in algorithms. It is an early example of a situation where randomness was not only powerful
but also, in a sense, the only way. In modern computing, randomized algorithms are ubiquitous.

The goal of this course is to expose you to randomized algorithms from a theoretical computer science
perspective. We will cover:

• Some well-known algorithms

• Tools to help design and analyze randomized algorithms

• Basic notions of complexity related to randomization in computing

• Application to a few areas

Algorithms can be quite complicated to design and analyze, and the addition of randomization makes
it even more so. For this reason, one has to learn certain ”templates.” Thus, there will be a bit of emphasis
on tools.

1.1 Today’s Tool: Linearity of Expectation

Suppose X =
∑n
i=1 aiXi, where X1, X2, . . . , Xn are random variables over some probability space (Ω, P r)

with finite expectation.
Then, by the linearity of expectation:

E[X] =

n∑
i=1

aiE[Xi]

A key advantage is that the random variables Xi can be dependent.

2 Randomized Quicksort

Quicksort was developed by Hoare in 1959. It works well in practice since it is in-place, does not require
additional memory, and has good cache behavior if implemented properly. The deterministic version can
run in O(n2) time in the worst case (e.g., on an already sorted array).

We will analyze Randomized Quicksort. Assume the input array A has distinct elements.

Algorithm: Quicksort(A[1..n])

1. If n=1, return A.

2. Pick a pivot element. In Randomized Quicksort, the pivot is A[i] where i is chosen uniformly at
random from {1, 2, . . . , n}.

1

3. Use the pivot to split A[1..n] into two subarrays, one with elements less than the pivot and one with
elements greater than the pivot. This step takes O(n) time.

4. Recursively sort the two subarrays.

Theorem 1. Randomized Quicksort runs in an expected time of O(n log n) on an array of n elements.

We will also later show that it runs in O(n log n) time ”with high probability.”

2.1 Analysis of Expected Running Time

2.1.1 Recursion-Based Analysis

Let T (n) be the expected number of comparisons that Randomized Quicksort makes on an array of n
elements. The recurrence relation is:

T (n) = n− 1 +
1

n

n∑
i=1

(T (i− 1) + T (n− i))

with the base case T (1) = 0. Exercise: Show that T (n) = O(n log n). This recurrence is easy to write
down, but the analysis is not very intuitive or insightful.

2.1.2 A Slick Analysis using Indicator Variables

Let the input array be A = [a1, a2, . . . , an]. Let the sorted version of the array be A′ = [a′1, a
′
2, . . . , a

′
n].

• Let X be the total number of comparisons.

• Let Xij be the indicator random variable for the event Eij that the algorithm compares a′i and a′j .

The total number of comparisons is X =
∑n−1
i=1

∑n
j=i+1Xij . By linearity of expectation:

E[X] =

n−1∑
i=1

n∑
j=i+1

E[Xij] =

n−1∑
i=1

n∑
j=i+1

Pr[Eij]

Lemma 1. Pr[Eij] = 2
j−i+1 .

Informal Proof. The elements a′i and a′j are compared if and only if one of them is chosen as a pivot from
the set {a′i, a′i+1, . . . , a

′
j} before any other element in that set is chosen as a pivot. Since any element in

this set is equally likely to be the first one chosen as a pivot, the probability that this is either a′i or a′j
is 2

j−i+1 .

Using this lemma, the expected number of comparisons is:

E[X] =

n−1∑
i=1

n∑
j=i+1

2

j − i+ 1

=

n−1∑
i=1

n−i∑
k=1

2

k + 1
(let k = j − i)

≤
n−1∑
i=1

2Hn

< 2nHn ≈ 2n lnn = O(n log n)

This analysis is very precise, intuitive, and insightful.

2

2.2 Concentration Bounds: Markov’s Inequality

Is knowing the expectation sufficient to call an algorithm ”good”? Ideally, we would like to know the
full distribution of the running time. Since this is often complicated, we use concentration inequalities
(bounds).

Theorem 2 (Markov’s Inequality). Suppose X is a non-negative random variable with finite E[X]. Then
for any t > 0:

Pr[X ≥ t · E[X]] ≤ 1

t

For Randomized Quicksort, since E[X] ≈ 2nHn, we can say:

Pr[#Comparisons ≥ 10nHn] ≤ 1

5

Here, t = 5, since 10nHn = 5 · (2nHn) ≈ 5 · E[X].

3 Max-Cut

Given a graph G = (V,E), the Max-Cut problem is to find a partition of the vertex set V into two
disjoint sets (S, V − S) such that the number of edges crossing the cut (with one endpoint in S and the
other in V − S) is maximized. This problem is NP-Hard.

3.1 A Simple Randomized Algorithm

1. Initialize S = ∅.

2. For each vertex u ∈ V , add u to S independently with probability 1
2 .

3. Output the cut (S, V − S).

3.1.1 Analysis

Let X be the number of edges crossing the cut. For each edge e ∈ E, let Xe be the indicator variable
that e crosses the cut. Then X =

∑
e∈E Xe. By linearity of expectation, E[X] =

∑
e∈E E[Xe] =∑

e∈E Pr[Xe = 1]. For an edge e = (u, v), it crosses the cut if u ∈ S and v /∈ S, or if u /∈ S and v ∈ S.

Pr[Xe = 1] = Pr[u ∈ S ∧ v /∈ S] + Pr[u /∈ S ∧ v ∈ S] =
1

2
· 1

2
+

1

2
· 1

2
=

1

4
+

1

4
=

1

2

Thus, E[X] =
∑
e∈E

1
2 = m

2 , where m = |E|. Since the optimal cut size OPT ≤ m, this gives a
1
2 -approximation algorithm in expectation: E[X] ≥ OPT

2 .

3.1.2 The Probabilistic Method

This result also shows a graph-theoretic fact: in any graph, there exists a cut of size at least m
2 . This

way of using probability to prove the existence of a combinatorial object is called the probabilistic
method.

3.2 Reverse Markov Inequality

Is there an analogue of Markov’s inequality for lower bounds? A general bound of the form Pr[X <
tE[X]] ≤ f(t) is not feasible if X has no upper bound. However, if it does, we can prove the following.

Theorem 3 (Reverse Markov Inequality). Let X be a non-negative random variable such that X ≤ B
almost surely. Then for any d < E[X]:

Pr[X ≥ d] ≥ E[X]− d
B − d

Proof. Apply Markov’s inequality to the non-negative random variable Y = B −X.

3

For Max-Cut, the number of crossing edges X ≤ m. We have E[X] = m
2 . Let’s find the probability

of getting a cut of size at least (1− δ)m2 :

Pr[X ≥ (1− δ)m
2

] ≥
m
2 − (1− δ)m2
m− (1− δ)m2

=
δm2

m
2 (1 + δ)

=
δ

1 + δ

By repeating the experiment many times and taking the maximum cut found, we can get arbitrarily
close to the expected value of m

2 .

4 Approximating Max-Cut via Vector Programming

The simple randomized algorithm guarantees an expected cut of m2 , but it might perform poorly on some
instances (e.g., on a bipartite graph where OPT = m). For a long time, this was the best approximation
ratio known. Goemans and Williamson introduced a new algorithm based on semidefinite programming.

4.1 Problem Formulation and Relaxation

Max-Cut can be formulated as a quadratic program. For each vertex i ∈ V = {1, . . . , n}, let xi ∈ {−1, 1}.
We can think of this as assigning each vertex to one side of the cut. An edge (i, j) is in the cut if xi 6= xj ,

which means xixj = −1. The size of the cut is
∑
ij∈E

1−xixj

2 . So, the problem is:

max
∑
ij∈E

1

2
(1− xixj) s.t. xi ∈ {−1, 1} ∀i ∈ V

This is equivalent to requiring x2
i = 1. This problem is NP-Hard. The key idea is to relax the constraint

that xi are scalars. Instead, let them be vectors.

(SDP Relaxation) max
∑
ij∈E

1

2
(1− v̄i · v̄j) s.t. ||v̄i|| = 1, v̄i ∈ Rn ∀i ∈ V

This is a semidefinite program (a type of convex optimization problem) and can be solved efficiently to
near-optimality. Let OPTSDP be the value of this relaxation. Clearly, OPTSDP ≥ OPT .

4.2 Goemans-Williamson Rounding

How do we get a cut from the vector solution v̄1, . . . , v̄n?

1. Solve the SDP to get vectors v̄1, . . . , v̄n.

2. Pick a random hyperplane through the origin. This can be done by picking a random unit vector
r̄ ∈ Rn.

3. Partition the vertices into S = {i | r̄ · v̄i > 0} and V − S.

4.2.1 Analysis

Let X be the size of the cut produced by this rounding procedure. E[X] =
∑
ij∈E Pr[edge ij is cut].

An edge (i, j) is cut if v̄i and v̄j fall on opposite sides of the random hyperplane. The probability of this
is proportional to the angle between them. Let θij be the angle between v̄i and v̄j .

Pr[edge ij is cut] =
θij
π

So, the expected size of the cut is E[X] =
∑
ij∈E

θij
π . The value of the SDP solution is OPTSDP =∑

ij∈E
1
2 (1− cos θij). It can be shown that for θ ∈ [0, π]:

θ

π
≥ 0.878 · 1

2
(1− cos θ)

This implies E[X] ≥ 0.878 ·OPTSDP ≥ 0.878 ·OPT .

4

4.3 Generating Random Vectors

How do we generate a random unit vector r̄ in a high-dimensional space Rd?

1. Generate a vector z̄ = (X1, X2, . . . , Xd), where each Xi is an independent random variable drawn
from the standard normal distribution N(0, 1).

2. The joint probability density function is fz̄(x1, . . . , xd) = 1
(
√

2π)d
e−(

∑
x2
i)/2.

3. This distribution is centrally symmetric, meaning the density only depends on the length of the
vector ||x̄||. Therefore, the direction of the vector z̄ is uniformly distributed.

4. Output the unit vector r̄ = z̄
||z̄|| .

5

