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Abstract

EDRAM cells require periodic refresh, which ends up consum-

ing substantial energy for large last-level caches. In practice, it

is well known that different eDRAM cells can exhibit very differ-

ent charge-retention properties. Unfortunately, current systems

pessimistically assume worst-case retention times, and end up

refreshing all the cells at a conservatively-high rate. In this

paper, we propose an alternative approach. We use known facts

about the factors that determine the retention properties of cells

to build a new model of eDRAM retention times. The model is

called Mosaic. The model shows that the retention times of cells

in large eDRAM modules exhibit spatial correlation. Therefore,

we logically divide the eDRAM module into regions or tiles,

profile the retention properties of each tile, and program their

refresh requirements in small counters in the cache controller.

With this architecture, also called Mosaic, we refresh each tile

at a different rate. The result is a 20x reduction in the number

of refreshes in large eDRAM modules — practically eliminating

refresh as a source of energy consumption.

1. Introduction

An attractive approach to reduce the energy wasted to leakage

in the cache hierarchy of multicores is to use embedded DRAM

(eDRAM) for the lower levels of caches. EDRAM is a capacitor-

based RAM that is compatible with a logic process, has high

density and leaks very little [13]. While it has higher access

times than SRAM, this is not a big concern for large lower-level

caches. As a result, eDRAM is being adopted into mainstream

products. For example, the IBM POWER7 processor includes

a 32 MB on-chip eDRAM L3 cache [32], while the POWER8

processor will include a 96 MB on-chip eDRAM L3 cache and,

potentially, an up to 128 MB off-chip eDRAM L4 cache [28].

Similarly, Intel has announced a 128 MB off-chip eDRAM L4

cache for its Haswell processor [2].

EDRAM cells require periodic refresh, which can also con-

sume substantial energy for large caches [1, 34]. In reality,

it is well known that different eDRAM cells can exhibit very

different charge-retention properties and, therefore, have dif-

ferent refresh needs. However, current designs pessimistically

assume worst-case retention times, and end up refreshing all the

eDRAM cells in a module at the same, conservatively-high rate.

∗This work was supported in part by NSF under grant CCF-1012759; Intel

through an Intel Ph.D. Fellowship to Aditya Agrawal; DARPA under UHPC

Contract HR0011-10-3-0007 and PERFECT Contract HR0011-12-2-0019; and

DOE ASCR under Award Numbers DE-FC02-10ER2599 and DE-SC0008717.

Dr. Amin Ansari is now with Qualcomm Inc., San Diego, CA.

For example, they use a refresh period of around 40 µs [3]. This

naive approach is wasteful.

Since eDRAM refresh is an important problem, there is sig-

nificant work trying to understand the characteristics of eDRAM

charge retention (e.g., [11, 16, 17]). Recent experimental work

from IBM has shown that the retention time of an eDRAM

cell strongly depends on the threshold voltage (Vt ) of its access

transistor [17].

In this paper, we note that, since the values of Vt within a

die have spatial correlation, then eDRAM retention times will

also necessarily exhibit spatial correlation. This suggests that

architectural mechanisms designed to exploit such correlation

can easily save refresh energy.

Consequently, in this paper, we first develop a new model

of the retention times in large on-chip eDRAM modules. The

model, called Mosaic, builds on process-variation concepts. It

shows that the retention properties of cells in large eDRAM

modules do exhibit spatial correlation. Then, based on the

model, we develop a low-cost architectural mechanism to exploit

such correlation and eliminate most of the refreshes.

Our architectural technique, also called Mosaic, consists of

logically dividing an eDRAM module into logical regions or

tiles, profiling the retention characteristics of each tile, and

programming their refresh requirements in small counters in the

cache controller. Such counters then trigger refreshes when it is

time to refresh their corresponding tiles. With this architecture,

we refresh each tile at a different rate.

There is prior work on solutions that exploit the non-

uniformity of the retention time of cells in dynamic memories to

reduce refreshes. Examples include RAPID [31], Hi-ECC [34],

the 3T1D-based cache [19], and RAIDR [21]. We discuss them

in detail in a later section. Fundamentally, our contribution is

at a different level, in that we investigate and identify the main

source of this variation, and build a mathematical model of the

variation. The model shows the presence of spatial correlation in

retention times. Building on this novel observation, we propose

a targeted solution to minimize refreshes.

Our results show that the Mosaic tiled architecture is both

inexpensive and very effective. An eDRAM L3 cache aug-

mented with Mosaic tiles increases its area by 2% and reduces

the number of refreshes by 20 times. This reduction is 5 times

the one obtained by taking the RAIDR scheme for main memory

DRAM [21] and applying it to cache eDRAM. With Mosaic,

we get very close to the lower bound in refresh energy, and end

up saving 43% of the total energy in the L3 cache.

This paper is organized as follows: Section 2 discusses the



problem addressed; Section 3 introduces the Mosaic model;

Sections 4 and 5 present the Mosaic architecture; Sections 6

and 7 evaluate them; and Section 8 covers related work.

2. Problem Addressed

In this section, we discuss how eDRAM cells retain charge. We

observe that the expected retention time and the one assumed

in practice are off by orders of magnitude. We then present the

distribution of the retention time and discuss its sources.

2.1. eDRAM Cell Retention Time

Fig. 1 shows an eDRAM cell. It consists of an access transistor

and a storage capacitor. The logic state is stored as electrical

charge in the capacitor. The capacitor loses charge over time

through the access transistor — shown as Io f f in the figure.

Therefore, an eDRAM cell requires periodic refresh to maintain

the correct logic state.
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Figure 1: An eDRAM cell.

The leakage through the transistor depends on the threshold

voltage (Vt) of the transistor. The higher the Vt is, the lower

the leakage is and, therefore, the cell retains its logic value for

longer. Conversely, a low Vt results in more leakage and, hence,

the cell loses its logic value sooner. On the other hand, a higher

Vt reduces the overdrive of the transistor and increases the access

time of the cell. Therefore, there is a tradeoff between the cell

access time and how long it retains its value.

We now derive a closed-form mathematical equation relating

the parameters of the cell to its retention time. Let C be the

storage capacitance, W and L the width and length of the access

transistor, V the voltage applied to the gate of the access transis-

tor, St the subthreshold slope (defined below), Io f f the off drain

current through the access transistor, and Tret the retention time

of the eDRAM cell. Tret is defined as the time until the capacitor

loses 6/10th of the stored charge [17], that is,

Tret =
0.6×C

Io f f (V=0)
(1)

The definition of Vt is empirical. The definition varies from

foundry to foundry, and across technology nodes. Kong et

al. [17] define it as the gate voltage at which the current becomes

the expression on the right in Eq. 2.

Io f f (V=Vt ) = 300× W

L
nAmps (2)

The subthreshold slope is defined as the inverse of the slope

of the semi–logarithmic Io f f -V curve, that is,

St =
Vt −0

log10(Io f f (V=Vt ))− log10(Io f f (V=0))
(3a)

=
Vt

log10(
Io f f (V=Vt)

Io f f (V=0)
)

(3b)

Re-arranging and substituting,

Io f f (V=0) = Io f f (V=Vt) ×10−Vt/St (4a)

= 300× W

L
×10−Vt/St nAmps (4b)

Substituting Eq. 4b in Eq. 1 gives

Tret = 0.6×C× L

W
×10Vt/St ×109/300 sec (5)

From [17], at 65nm technology, we get C = 20 f F , L = W =
100 nm, Vt = 0.65 V and St = 112 mV/dec. Substituting these

values in Eq. 5, we get Tret = 25.44 ms.

Therefore, we expect eDRAM cell retention times to be of

the order of a few tens of milliseconds. However, in practice,

eDRAM cells are refreshed with a period of the order of a few

tens of microseconds. For example, Barth et al. [3] report a

time of 40 µs. This is because manufacturing process variations

result in a distribution of retention times and, to attain a high

yield, manufacturers choose the retention time for the entire

memory module to be the one of the leakiest cells.

2.2. Retention Time Variation

It is well known that there is variation in the retention time

of eDRAM and DRAM cells (e.g., [11, 16, 17]). The overall

distribution and the sources of variation have also been identified.

Fig. 2 shows a typical eDRAM retention time distribution [17].

The X axis is log10 Tret . The Y-axis is the cumulative density

function of the number of cells under a given retention time. The

Y axis uses a normal distribution scale — that is, 0 represents

the fraction 0.500, −1σ represents the fraction 0.158, and so on

as shown in Table 1.

Sigma (σ ) Fraction

0.0 0.500000

-1.0 0.158655

-2.0 0.022750

-3.0 0.001349

-4.0 0.000031

-4.5 0.000003

Table 1: Area under the curve for a normal distribution.

The figure shows that the retention time distribution has two

components, namely the Bulk Distribution and the Defect Tail

Distribution. The Bulk Distribution includes the majority of

cells. Specifically, since the figure shows that the Bulk Distri-

bution goes from approx. −4σ to ∞, it includes the 0.999968



Figure 2: Typical eDRAM retention time distribution [17].

fraction of the cells — as given by the area under the curve

of a normal distribution from −4σ to ∞. In addition, the fact

that it appears as a straight line in the log-normal plot of Fig. 2

indicates that log10 Tret follows a normal distribution for the

Bulk — or that Tret follows a log-normal one for the Bulk.

Based on experimental data, Kong et al. [17] from IBM say

“We demonstrate that the Tret (Bulk) Distribution can be at-

tributed to array (i.e., access transistor) Vt variation”. This is a

key observation, and is consistent with what we know about Vt ’s

process variation distribution. Indeed, it is accepted that process

variation in Vt follows a normal distribution [17]. If we take the

log of Eq. 5, we obtain,

log10 Tret =
Vt

St

+ expression (6)

which shows that a normal distribution of Vt results in a normal

distribution of log10 Tret and, hence, a log-normal distribution

of Tret . This agrees with the straight line in Fig. 2.

The Tail Distribution includes very few cells. Since it covers

the area under the curve from −∞ to approx. −4σ in Fig. 2,

it includes only the 0.000031 fraction of the cells, or 31 ppm

(parts per million). The fact that it appears as a straight line in

Fig. 2 indicates that log10 Tret follows a normal distribution for

the Tail — hence, Tret follows a log-normal one for the Tail.

The source of the Tret Tail Distribution has been attributed to

random manufacturing defects. These defects manifest them-

selves as leaky cells. However, not all the cells following the

Tail Distribution are considered defective. Only the cells in

the region −∞ to −4.5σ (about 3 ppm) are considered defec-

tive and are handled by redundant lines provided by ordinary

designs [12, 17].

In the distribution above, the −4.5σ point represents a reten-

tion time of 45 µs. Barth et al. [3] have reported retention times

of 40 µs as well. Therefore, it is clear that, overall, eDRAMs are

refreshed at a very pessimistic rate. Since process variation in

the Vt of the access transistor governs the distribution of almost

all the cells, we look at it in more detail next.

2.3. Process Variation in the Threshold Voltage

Process variation in the Vt has two components, namely, sys-

tematic and random. Systematic variation is introduced by

lithographic tools such as steppers, and exhibits high spatial

correlation [9, 22, 27] — i.e., nearby transistors have similar

Vt . Random variation is the result of material defects, dopant

fluctuation, and line edge roughness, and is essentially white

noise. The total variation is a superposition of the systematic

and random components.

VARIUS [26] and other variation-modeling tools model the

two components with normal distributions. Each distribution

has its own sigma, namely, σsys and σrand . The superposition

of both components results in an overall normal distribution for

Vt ’s variation, with a sigma σtot equal to
√

σ2
sys +σ2

rand . It is the

combined systematic and random components of Vt ’s variation

that induce the Bulk Distribution in Fig. 2.

From Eq. 6, we observe that the spatial correlation in Vt will

result in spatial correlation in the retention times of eDRAM

cells — i.e., eDRAM cells that are spatially close to each other

will have similar retention time values. In this paper, we exploit

this property to eliminate most refreshes.

3. The Mosaic Retention Time Model

We want to develop a new model of eDRAM retention time

that can help us to understand and optimize eDRAM refreshing.

This section describes our model, which we call Mosaic.

3.1. Extracting the Values of Retention Parameters

To build the model, we first need to obtain the values for the

key parameters of the Tret Bulk and Tail Distributions in Fig. 2.

Specifically, we need: (i) the mean and sigma of the Bulk Dis-

tribution (µBulk,σBulk), (ii) the mean and sigma of the Tail Dis-

tribution (µTail ,σTail), and (iii) the fraction of cells that follow

the Tail Distribution (ρ). From Kong et al. [17], we obtain

that µ(Vt) = 0.65 V , σ(Vt) = 0.042 V , and St = 112 mV/dec.

Therefore, from Eq. 6, and computing expression based on Eq. 5,

we get the parameter values for the Bulk Distribution:

µBulk(log10 Tret) =
µ(Vt)

St

−7.40 = −1.594

σBulk(log10 Tret) =
σ(Vt)

St

= 0.375

Kim and Lee [16] observe that the peak of the Bulk Dis-

tribution and the peak of the Tail Distribution in DRAMs are

off by approximately one order of magnitude. This is 1 in

log10 scale, which is approximately 3 times the value that we

have just obtained for σBulk. Hence, in our model, we esti-

mate the peak of the Tail Distribution (µTail(log10 Tret)) to be

3×σBulk(log10 Tret) to the left of the peak of the Bulk Distribu-

tion (µBulk(log10 Tret)):



µTail(log10 Tret)−µBulk(log10 Tret) = −3×σBulk(log10 Tret)

= −1.125

hence, µTail(log10 Tret) = −2.719

We obtain the last two parameters, namely σTail(log10 Tret)
and ρ , by curve-fitting the data in Fig. 2. We obtain,

σTail(log10 Tret) = 1.8

ρ = 0.000020 (20 ppm)

This value of ρ is more accurate than our initial estimation of

31 ppm for the Tail Distribution in Sec. 2.2. The final parameter

values are summarized in Table 2. With these values, we gener-

ate the curve shown in Fig. 3. On this same graph, we superpose

the experimental data from Fig. 2 in circles. We can see that the

curve fits the experimental data. Moreover, our parameters are

in agreement with an observation made in [11] that the σ of the

Tail and the Bulk Distributions have a ratio of 4.87. This ratio

for Mosaic is 4.80. Finally, in this curve, the −4.5σ point (3

ppm) corresponds to a retention time of about 45 µs.

Parameter Value

µBulk(log10 Tret) -1.594

σBulk(log10 Tret) 0.375

µTail(log10 Tret) -2.719

σTail(log10 Tret) 1.8

ρ 20 ppm

Table 2: Parameter values extracted from the data in [17].

Figure 3: Retention time curve generated by Mosaic compared
to the experimental data in [17].

3.2. Generating a Spatial Map of Retention Times

The parameter values for the Bulk and Tail Distributions ex-

tracted in the previous section are not enough to generate a

spatial map of the Tret values in a given memory module. The

reason is that the σBulk(log10 Tret) has a random and a system-

atic component, and the latter has a spatial correlation function.

These effects are caused by the Vt distribution, as per Eq. 6. Dif-

ferent values for the σ breakdown into systematic and random,

and the spatial correlation do not change the Bulk line in Fig. 2,

as long as the total σ stays constant. However, they produce

very different spatial maps of Tret values. For example, if the

fraction of σ coming from its systematic component is high and

the correlation distance is long, there will be spatial clusters of

eDRAM cells with similar Tret . For the Tail Distribution, since

it does not have any systematic component, we do not need any

more information.

Overall, to generate a spatial map of the Tret in an eDRAM

memory module, we need to know: (i) the values in Table 2,

(ii) the breakdown of σBulk(log10 Tret) into random and sys-

tematic components, and (iii) the correlation function for the

systematic component. Our observation is that we can obtain

(ii) and (iii) based on published data on the Vt variation of the

access transistors. Specifically, as per Eq. 6, the breakdown of

σBulk(log10 Tret) into random and systematic components is the

same as the breakdown of σ(Vt). Similarly, the correlation of

log10 Tret ’s systematic component follows the correlation of Vt ’s

systematic component.

3.3. Procedure to Generate a Spatial Tret Map

Let us now generate a spatial map of Tret values for an on-chip

eDRAM memory module of 1024×1024 cells that distribute

according to the parameter values of Table 2. For the Vt vari-

ation parameters of the access transistors, we will assume the

following. First, following Karnik et al. [14], the σ(Vt) has

equal components of systematic and random components —

i.e., σsys = σrand = σ/
√

2. Secondly, the correlation function

for Vt’s systematic component follows the Spherical function

described in VARIUS [26] with a correlation distance φ of 0.4.

To generate the spatial Tret map, we first generate the one

for its Bulk Distribution and then superpose the one for its Tail

Distribution. For the Bulk one, we first generate the spatial

map for the systematic component and then superpose the one

for the random component. To generate the Tret’s Bulk Distri-

bution maps, we will first proceed with the intermediate step

of generating the Vt maps and then use Equation 6 to generate

Tret’s Bulk maps. This is done for pedagogical reasons, since

we could instead directly generate Tret ’s Bulk maps using (i) the

µBulk and σBulk of Table 2, (ii) the breakdown of σ(Vt), and (iii)

the correlation of Vt ’s systematic component.

3.3.1. Spatial Map for log10 Tret ’s Bulk Distribution. Follow-

ing the VARIUS methodology [26], we lay out an imaginary

grid of Nx ×Ny points on top of the eDRAM memory module.

We then invoke VARIUS with µ(Vt)=0.65 V, σ(Vt)=0.042 V

(these two values are from Kong et al. [17]), and correlation

distance φ=0.4 (this is one of our assumptions). We obtain a

spatial map of Vt’s systematic component, as shown in Fig. 4a.

We then obtain Nx ×Ny samples of a normal distribution with

µ = 0 and σrand(Vt), without correlation, as shown in Fig. 4b.

As expected, the spatial map looks like white noise. We then

superpose both maps, point per point, and obtain the total Vt

map in Fig. 4c. Finally, the spatial map for log10 Tret’s Bulk

Distribution is obtained from the spatial map of the total Vt by

applying Eq. 6 to every point in the grid. The resulting map is

shown in Fig. 4d.

3.3.2. Spatial Map for log10 Tret ’s Tail Distribution. We use

a normal distribution with the µTail and σTail of Table 2, and



Figure 4: Various spatial maps of Vt and log10 Tret for an on-chip eDRAM memory module.

take Nx ×Ny ×ρ samples with no correlation. We place them

randomly on the Nx ×Ny grid. The locations of the Tail cells are

marked by circles in Fig. 4e.

3.3.3. Spatial Map for Overall log10 Tret ’s Distribution. We

obtain the spatial map for the overall log10 Tret by replacing

points in the Bulk Distribution with those in the Tail Distribution.

The result is Fig. 4f, where the locations of the Tail cells are

marked in circles. The map is almost the same as the one with

only Bulk, since only a fraction ρ is replaced by Tail cells.

3.4. Using the Mosaic Retention Model Across Generations

As we move from one eDRAM generation to the next, we need

to recompute the new distribution of Tret . The Bulk Distribution

of Tret can be easily computed from the distribution of the access

transistor’s Vt — obtained with Vt ’s µ , σ , σ breakdown, and φ .

This information on Vt for the new eDRAM generation may be

easily available from the manufacturing process. The Tail Dis-

tribution of Tret , however, needs to be characterized with direct

measurements that extract µTail(log10 Tret), σTail(log10 Tret),
and ρ .

In some cases, it may be too expensive or difficult to char-

acterize the Tail Distribution of Tret for a new generation. In

these cases, it may be possible to reuse the known Tail Distri-

bution from the older eDRAM generation (if it has changed

relatively little), and combine it with the Vt information of the

new eDRAM generation, to generate the distribution of Tret for

the new eDRAM generation.



4. The Mosaic Architecture

4.1. Insight and Opportunity

The analysis in the previous section has provided a useful in-

sight: since the retention time of an eDRAM cell is highly

dependent on its access transistor’s Vt , and Vt has well-known

spatial correlation properties, then the retention time also has

spatial correlation. This fact offers an opportunity to save re-

fresh energy. Specifically, we can logically group cells into

regions, profile their retention time, and set-up time counters to

refresh the regions only at the frequency that each one requires.

With reasonable spatial correlation, the hardware cost of the

counters will be minimal.

As an example, consider the eDRAM of Fig. 4f. Let us

organize it as a 4-way set associative memory with 256-bit lines.

Since eDRAM reads, writes and refreshes are performed at line

granularity, we need the line-level distribution of log10 Tret . For

this, we set a line’s Tret to the minimum of the Tret of the bit

cells constituting the line. The result is shown in Fig. 4g.

If Nlines is the number of lines in the memory module, the

per-line retention time map gives an absolute lower bound of

the number of refreshes required to prevent data loss:

Min. re f reshes/sec =
Nlines

∑
i=1

1

Tret_line_i

(7)

This lower bound would be hard to attain. First, the memory

has a limited number of ports, and only a number of lines equal

to the number of ports can be refreshed simultaneously. Hence,

some of the refreshes may need to be delayed. As a result, to

ensure correctness when multiple lines need to be refreshed at

the same time, and some refreshes need to be delayed, we need

to provide a timing guardband.

In addition, providing a counter per line is too expensive.

Kaxiras et al. [15] have estimated the cost of an N-bit counter

to be 40N +20 transistors. Therefore, even a 2-bit counter per

256-bit line would amount to a 40% area overhead. Solutions

using Bloom filters lose accuracy.

The striations seen in Fig. 4g indicate that there is spatial

correlation in the Tret of adjacent lines — especially within the

same way. Hence, we group sets of contiguous lines from the

same way into Tiles, setting Tret for the tile to the minimum of

the Tret of the lines constituting the tile. Figs. 4h and 4i show

the tile-level distribution of log10 Tret for tile sizes of 16 and 64

lines, respectively. We can see that there are regions of spatial

locality. The resulting distribution looks like a mosaic of tiles.

With this design, the hardware cost of a counter is amortized

over a whole tile. However, we have to refresh the whole tile

whenever the counter rolls down to zero.

4.2. Profiling the Retention Times

Mosaic needs to profile the retention times of the tiles, for exam-

ple at boot time. Literature from industry such as IBM [13, 17],

Intel [34], Samsung [16], and Toshiba [11], and academic

groups [6, 21, 31] have proposed and/or used Tret profiling

schemes. However, recent work [20] has pointed out that Tret

profiling has to deal with Data Pattern Dependence (DPD) and

Variable Retention Time (VRT) effects. As suggested in [20]

and [13], profiling in the presence of DPD can be best done by

using a variety of manufacturer-provided test patterns — e.g., all

0s/1s, checkerboard, walk and random. One of the papers [20]

also points out that VRT changes are slow (in the order of hours

and sometimes a day) and, therefore, one could profile peri-

odically. Note that a tile in Mosaic will include over 10,000

cells. With many cells, it is possible that, macroscopically, these

effects exhibit relatively less external variation across measure-

ments. In reality, sophisticated profiling techniques are still

a subject of research in this area, and paramount to dynamic-

memory manufacturers. Once the tiles are profiled at boot time,

the per-tile Tret count in cycles is stored in a small SRAM in the

cache controller.

4.3. Temperature Adaptation

The Vt of a transistor is a function of temperature (T) [33].

Therefore, the access transistor’s leakage current (Eq. 4b) and

Tret (Eq. 5) vary strongly with T. Empirical data [5, 6] suggests

the following exponential relationship between Tret and T: there

is approximately a 1.3x reduction in Tret for every 10 ◦C increase

in T. Specifically, let T1 and T2 be the T in ◦C and Tret_1 and

Tret_2 their corresponding Tret , then

Tret_2 = Tret_1 × e−0.0268×(T2−T1) (8)

The boot-time profiling temperature (T0) and the correspond-

ing Tret_0 values are stored in the SRAM. At run time, a ther-

mal sensor measures T. If the T is T ′, then when Mosaic

reads the SRAM, it computes the new T ′
ret as f (T0,Tret_0,T

′ +
Guardband), using Eqn. 8. We add a small T guardband as

a safeguard against T changes between consecutive refreshes

of the tile. This guardband is only a few degrees, as the time

between refreshes is at most a few ms, and T changes slowly.

For these computations, we need a lookup table (LUT) and

an 8-bit adder and multiplier. The exponential portion of Eqn.

8 is stored in a 32-entry LUT (from -40 ◦C to 120 ◦C in 5 ◦C

steps). Each LUT entry is 8 bits.

In an advanced design, we may want to consider a per-tile T ,

rather than a single T for the whole eDRAM module. In this

case, we would need to store a per-tile reference temperature

T0 in addition to a per-tile Tret_0. At run time, T sensors would

provide the T ′ of each tile. Then, for each tile, the algorithm

would use the local T ′ and the local T0 to apply the correction

to the local Tret_0.

4.4. Designing the Refresh Counters

Assuming that we have accurately profiled each tile’s Tret , we

now consider the design of the refresh counters. A refresh

operation is akin to a read or a write access to the cache line.

However, the refresh operation takes precedence over normal

accesses. In addition, we assume that a refresh operation takes

one cycle when done in a pipelined fashion. If a memory module

is organized into banks, then the banks can be refreshed in

parallel. In a given bank, the number of ports sets the number



of refreshes that can proceed in parallel; if the bank has a single

port, then only one refresh can be done in the bank per cycle.

In this paper, we assume one port per bank. Therefore, the

minimum number of cycles required to refresh a whole bank is

Nlines, which is the number of lines per tile times the number

of tiles per bank. In the worst case, all the lines of the bank

might require a refresh at the same time. To handle this corner

case, we need to use a time guardband equal to the maximum

time between requesting a refresh and being serviced. This

guardband is equal to the time required to refresh all the lines

of the bank, that is,

Guardband =
Nlines

f
(9)

where f is the frequency of the cache. Therefore, the corrected

value of the retention time to be used for a tile, T ′
ret , is

T ′
ret = Tret −Guardband (10)

A second correction comes from the fact that Mosaic uses

counters to track time. A counter increments in units of Step.

Therefore, T ′
ret has to be rounded to the highest multiple of Step

that is less than T ′
ret . Combining guardbanding and rounding off,

the value of the retention time to be used, T ′′
ret , is

T ′′
ret = n× step | n× step ≤ T ′

ret < (n+1)× step (11)

4.5. Overall Mosaic Design & Operation

Fig. 5 shows the hardware needed by Mosaic to refresh a cache

bank. The cache controller for the bank has a programmable

clock divider, a down-counter for each of the tiles in the bank,

a sequencer, an LUT with an adder and multiplier, and a small

Retention Profile SRAM. The latter stores data obtained from

profiling during boot time: Tret for each of the tiles in the bank,

and the bank’s temperature (T0). The LUT with the adder and

multiplier are used for T adaptation (Section 4.3).
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Figure 5: Hardware required by Mosaic to refresh a cache bank.

The programmable clock divider takes a reference clock as

input and creates a clock pulse of Step, which is typically the

−4.5σ point, i.e., about 45 µs. This signal acts as the clock for

all the per-tile counters. Each counter is an N-bit down-counter

that tracks the retention time of one tile. All counters are ini-

tialized to the values in the SRAM followed by the adjustments

due to T (Section 4.3) and other corrections (Section 4.4).

At every Step, the sequencer rolls down all the counters one by

one. For a given counter, it first decrements it and then compares

its value to zero. If it is zero, the sequencer schedules refreshes

for all the lines in the corresponding tile. Next, it reloads the

value of the counter after reading the SRAM and adjusting it

for T and the other corrections. Then, the sequencer moves to

the next tile. The process continues until all the counters get

decremented.

4.6. Area and Energy Overheads

Mosaic induces little area and energy overhead. To see why,

assume that Fig. 5 corresponds to a 1 MB cache bank with 64-

byte lines and 16-line tiles. Such an organization has 1024 tiles

in the bank. We can use down-counters with 8 bits which, if

they step at 45 µs, can cover a Tret of nearly 12 ms.

Consider first the area and energy overhead of the Retention

Profile SRAM. Its storage capacity is about 1KB, which is

0.1% of the data array in the cache bank. Hence, it takes an

insignificant area. The SRAM is accessed only when a counter

rolls down to zero. Given the Tret distribution, this happens

infrequently — typically, every few µs, since we have 1024

tiles and typical Tret values are equal to a few ms. Hence, the

overall dynamic energy associated with reading the SRAM is

insignificant. The same is the case for its leakage power.

Next, consider the area and energy overhead of the counters.

If we assume that an N-bit counter needs about 40N +20 tran-

sistors [15], then adding an 8-bit counter per each 16-line tile

adds 4% more transistors. In addition, since the counters are

only accessed every 45 µs, their dynamic energy contribution

is very small. Similarly, their leakage power is negligible. In

Section 7, we estimate their area and energy overhead accurately

using the Synopsys Design Compiler.

Finally, consider the 32-byte LUT and the 8-bit adder and

multiplier. Using McPAT [18], we estimate that their area is

0.2% of the area of the cache bank, which is negligible. Also,

the energy overhead of these structures is very small, as they are

accessed only every few µs as the SRAM.

5. Discussion

We can approach the lower bound of refresh energy (Eq. 7) if

we can afford per-line counters with an arbitrary number of bits

and Step sizes. However, this solution is very expensive in both

area and energy. On the other hand, we can avoid the area and

energy overheads altogether if we refresh the entire eDRAM

module at a constant rate, as it is currently done. There is a clear

tradeoff between the potential refresh-energy savings and the

overheads we are willing to incur.

As the number of lines per tile increases, the area and energy



overheads of the counters decrease. However, the lines consti-

tuting the tile are refreshed at the rate needed by the line with

the lowest retention in the tile. Therefore, we perform more

refreshes than required and move away from the lower bound.

As the number of bits in the counter increases, the area and

energy overhead increases, but in return we create more bins

and therefore reduce the number of refreshes. The benefits

saturate as soon as the range of the counter approaches the

higher retention times of the distribution.

We do not experiment with counter Step sizes. A Step size

larger than the -4.5σ point, such as 100 µs, would require

disabling the lines with retention times in the range 45 µs -

100 µs. It would allow us to investigate solutions that trade-off

cache capacity for refresh energy gains. A Step size less than

the -4.5σ point would increase the granularity of the counter,

but decrease the range of the counter. Initial results suggested

that, given the same number of bits, the benefits of a larger range

with coarser granularity outweigh the benefits of a smaller range

with finer granularity.

We can potentially attain higher energy savings by using

variable-sized tiles. For example, if there is a line or a small

region of lines that have very different Tret than their neighbors,

we can save refreshes by placing them in a tile of their own. In

contrast, if there is a very large region of lines that have similar

Tret , then we can save counter overhead and energy by placing

all of them in a giant tile. However, while having variable-sized

tiles may be attractive, it has hardware reconfiguration costs and

design complexity. Further, as we will see in Section 7, Mosaic

with fixed-sized tiles already eliminates the majority of refresh

energy at a very modest hardware cost. Hence, there is little

room to improve.

Finally, given an eDRAM module, the fraction of refresh

power that Mosaic eliminates does not depend on the application

running or its input data size. Mosaic’s refresh savings depend

on the Tret variation profile, and the hardware parameters of the

eDRAM module and Mosaic.

6. Evaluation Setup

We evaluate Mosaic with simulations of a chip multiprocessor

(CMP) with 16 cores. Each core is a dual-issue, out-of-order

engine. The cache hierarchy consists of per-core private L1

instruction and data caches, a per-core private L2 cache, and a

shared L3 cache. The L3 is divided into 16 banks. Each bank is

close to one core and has a statically-mapped range of addresses.

A 4x4 torus on-chip-network connects the 16 nodes. The CMP

uses a MESI directory coherence protocol maintained at the L3.

The architectural parameters are shown in Table 3.

The L1 and L2 caches are modeled as SRAMs. The L3

cache is modeled as an eDRAM. Each L3 bank has a Mosaic

module as in Fig. 5. A refresh operation is like a cache access,

consuming an energy equal to a cache line hit. It takes one cycle

when done in a pipelined fashion.

To evaluate Mosaic, we use a variety of tools. To estimate

performance, we use the SESC [25] architecture simulator. To

estimate the area and the dynamic and leakage energies of cores,

Architectural Parameters

Chip 16-core CMP

Core 2-issue out-of-order

Instr. L1 cache 32 KB, 2 way. Round trip (RT): 2 ns

Data L1 cache 32 KB, 4 way, WT, private. RT: 2 ns

L2 cache 256 KB, 8 way, WB, private. RT: 6 ns

L3 cache 16 MB, 16 banks, WB, shared

L3 bank 1 MB, 8 way. RT: 14 ns (local), 26 ns (farthest)

Line size 64 bytes

DRAM Idle RT from controller: ≈ 40 ns

Network 4 x 4 torus

Coherence MESI directory protocol at L3

Step size 50 µs

Technology Parameters

Tech. node 32 nm

Frequency 1000 MHz

Device type Low operating power (LOP)

Temperature 330 Kelvin

eDRAM µ(Vt)=0.65V, σ(Vt)=0.042V (equal

variation contrib. systematic and random), φ=0.4

Tools

Architecture SESC [25]

Time & Power McPAT [18] and CACTI [30]

Synthesis Synopsys Design Compiler

Statistics R [29]

Variation VARIUS [26]

Table 3: Evaluation parameters & tools.

caches and interconnect, we use McPAT [18]. Since McPAT

does not model eDRAM caches, we use CACTI [30] to estimate

the area and energy of the L3. We use the Synopsys Design

Compiler to estimate the area and energy of the counters intro-

duced by Mosaic. Finally, we use VARIUS [26] to model Vt

variation and R [29] for fast statistical prototyping and analysis.

We target a platform where energy efficiency is critical.

Hence, we use a modest frequency. We use area, energy, and

timing estimates for 32 nm technology — although the Tret

distribution from IBM used in this paper (Fig. 2) is for 65 nm

technology. We use this distribution for lack of corresponding

data at 32 nm. However, at 32 nm, the distribution changes

only marginally [16]. To generate spatial maps for Tret , we use

the distribution parameters of Table 2. For each experiment,

we average out the results of 20 Tret maps. The Vt variation

parameters used are shown in Table 3. The µ(Vt) and σ(Vt)
values are obtained from Kong et al. [17]. We assume an equal

contribution of systematic and random components in σ(Vt),
but later we vary the breakdown.

We evaluate Mosaic designs with different combinations of

tile size (Tsize) and counter size. The parameter sweep is sum-

marized in Table 4. A 1-bit counter rolls down every Step, and

corresponds to the baseline (i.e., conventional) implementation

of periodic refresh every Step. We assume a constant T of 330

K. We do not experiment with T variation (spatial or temporal)

and the corresponding refresh rate adaptation.

Tile size (lines) 1, 2, 4, 8, 16, 32, 64

Counter size (bits) 1, 2, 3, 4, 5, 6, 7, 8

Table 4: Parameter sweep. We use 56 total combinations.

We compare Mosaic against: (i) the baseline (i.e., conven-

tional) periodic refresh, (ii) a proposed scheme that uses mul-
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Figure 6: Area overhead of the counters (top), and power consumed refreshing L3 and operating the counters (bottom).

tiple refresh periods (RAIDR [21]), and (iii) an ideal design

with the lower-bound refresh as given by Eq. 7. The ideal de-

sign is subjected to the guardband of Section 4.4, but not to the

rounding-off constraint. Guardbanding is required because of

port constraints, but rounding-off is an artifact of using counters.

For simplicity, we use a Step size of 50 µs. The baseline

design refreshes at every Step and has no counter overhead.

RAIDR [21] was proposed to refresh pages in DRAM main

memories with bins that are in a geometric progression with a

ratio of 2 i.e., either 64 ms, 128 ms or 256 ms, depending on

the pages’ retention times. It uses a Bloom filter per bin. Since

we apply it to eDRAMs, we set it to refresh cache lines at the

Step size, 2 × the Step size, or 4 × the Step size — namely,

50 µs, 100 µs or 200 µs. As we discuss in Section 8, we do not

enable more bins to be faithful to the original design. In practice,

more bins could be supported but, with many bins, the algorithm

becomes inefficient: the bins for the higher refresh times quickly

become too coarsed-grained to be useful. Moreover, with many

Bloom filters, the algorithm quickly becomes slow. For Mosaic

and for the ideal design, we use fixed-distance bins: 50 µs, 100

µs, 150 µs, 200 µs, etc.

We evaluate these designs with the following 16-threaded

applications from SPLASH-2 and PARSEC, where the problem

sizes are in parenthesis: FFT (220), LU (512x512), Radix (2M

keys), Cholesky (tk29.O), Barnes (16K particles), FMM (16K),

Radiosity (batch), Raytrace (teapot), Streamcluster (sim small),

Blackscholes (sim medium), and Fluidanimate (sim small).

7. Evaluation

In Section 7.1, we evaluate the merit of several combinations

of tile sizes and counter sizes in saving refresh energy. We

choose the combination that minimizes the area and energy over-

heads of the counters, and maximizes refresh energy savings.

In Section 7.2, we compare the resulting best Mosaic against

the baseline, RAIDR, and ideal designs. We examine reduction

in refreshes, system performance, and L3 energy savings. Fi-

nally, in Section 7.3, we perform a sensistivity analysis of the

breakdown of σ(Vt) into systematic and random components.

7.1. Finding the Best Mosaic

Figure 6 shows the area overhead of the counters (top), and

the power consumed refreshing L3 and operating the counters

(bottom) for different parameter combinations. In both plots,

the X-axis is divided into 7 sets. Each set corresponds to a tile

size (Tsize) in number of L3 cache lines. Within each set, there

are 8 bars for different counter sizes in bits. The area overhead

of the counters is shown as a percentage of the L3 data array

area. The power consumed is normalized to that of the baseline

(i.e., conventional) design. It is broken down into contributions

from refreshing the L3 cache, and operating the counters.

In both plots, across all tile sizes, a 1-bit counter is equivalent

to not having a counter at all, and corresponds to the baseline.

Therefore, in the area overhead plot, the 1-bit counter is marked

zero. Likewise, in the power plot, its counter power component

is zero. All the 1-bit combinations are equivalent and correspond

to the baseline.

For a fixed Tsize, the area overhead of the counters increases

as the size of the counters increases. For a given counter size, its

area overhead decreases as the Tsize increases. This is because

the same counter is now being shared amongst more lines.

For a given Tsize, the refresh power decreases with the counter

size. This is because the retention time of the tiles can be tracked

at a much finer granularity. However, the benefits flatten out

as the range of the counter approaches the maximum retention
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Figure 7: Number of L3 refreshes (top), execution time (center), and L3 energy consumption (bottom).

time of the distribution. As the Tsize increases, the refresh power

goes up. This is because all the lines in a tile are refreshed at the

rate of the weakest line in the tile. We also see that the counter

power is negligible compared to the L3 refresh power.

Therefore, there is a clear tradeoff in Mosaic between area

overhead and refresh power savings. To help choose the best

design, we only consider combinations with an area overhead

of less than 2% and refresh power savings of at least 90%.

Amongst the few candidate solutions, a tile size of 32 lines with

a 6-bit counter is the best combination. It has an area overhead

of 2% and refresh power savings of 93.5%. Henceforth, we call

this combination the Mosaic.

7.2. Refresh Count, Performance & Energy

Figure 7 shows the total number of L3 refreshes (top), the exe-

cution time (center), and the L3 energy consumption (bottom)

for different designs running the applications. In all plots, the

X-axis is divided into 12 sets (11 for the applications and 1 for

the average). Each application is run on the baseline, RAIDR,

Mosaic, and ideal designs, and the result is normalized to the

application’s baseline design. In the L3 energy plot, each bar is

broken down into dynamic, leakage and refresh energies from

bottom to top. The dynamic energy is too small to be seen.

Total Refresh Count. As we go from baseline to RAIDR, to

Mosaic, and to ideal, we see that the number of L3 refreshes

decreases. There is little difference across applications; the

difference is affected by how much the optimized designs speed-

up the particular application over baseline. Overall, on average,

RAIDR reduces the number of L3 refreshes to a quarter (i.e., a

reduction of 4x). This is expected from the statistical distribution

of Tret , where most of the lines have a Tret of over 200 µs. In

contrast, on average, Mosaic reduces the number of refreshes

by 20x. In addition, Mosaic is within 2.5x of ideal. Recall that

ideal has not been subjected to the rounding-off constraint. Any

practical implementation, using counters or otherwise, will have

additional overheads (e.g., area or precision loss), and will close

the gap between Mosaic and ideal.



Performance. Across most applications, we see that the differ-

ent optimized designs perform better than the baseline. The

reason for the faster execution is that the reduction in the num-

ber of refreshes reduces L3 cache blocking. The applications

with most L3 accesses are the ones that benefit the most. On

average, RAIDR reduces the execution time by 5%, Mosaic by

9%, and ideal by 10%. Mosaic comes to within one percent of

the execution time of ideal.

L3 Energy. Across all the applications, we see that the different

optimized designs significantly reduce the L3 energy compared

to baseline. The reduction comes from savings in refresh energy

and (to a much lesser extent) leakage energy. As is generally the

case for last level caches, the fraction of dynamic energy is very

small. The savings due to refresh energy reduction are the most

significant. The designs reduce refresh energy by significantly

reducing the number of refreshes. We can see that Mosaic

eliminates practically all of the refresh energy; its effectiveness

is practically the same as the ideal design.

The leakage energy is directly proportional to the execution

time. Since these optimized designs reduce the execution time,

they also save leakage energy. Overall, on average, RAIDR

saves 33% of the L3 energy. Mosaic saves 43% of the L3 energy

and is within one percent of the ideal design.

7.3. Sensitivity Analysis

Up until now, we have assumed that σ(Vt) has equal systematic

and random components — i.e., σrand : σsys is 1:1. In future

technology nodes, the breakdown into systematic and random

components may be different. Hence, we perform a sensitiv-

ity analysis, keeping the total σ(Vt) constant, and varying its

breakdown into the σrand and σsys components. We measure the

power consumed by the Mosaic configuration chosen in Sec-

tion 7.1, as it refreshes L3 and operates the counters. Fig. 8 com-

pares the resulting power. The X-axis shows different designs,

as we vary the ratio σrand : σsys, with the random component

increasing to the right. The bars are normalized to the case

for σrand : σsys = 1 : 1, and broken down into power consumed

refreshing L3 and operating the counters.
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Figure 8: Power consumed refreshing L3 and operating the
counters, as we change the breakdown of σ(Vt).

The refresh power increases as the random component gains

more weight. The reason is that, with relatively lower systematic

component, the spatial correlation of Tret decreases, eroding

away some of the benefits of tiling. However, it is important to

note that the increase in refresh needs is modest. Specifically,

for a σrand : σsys = 4 : 1, the increase in power over the 1:1

configuration is only about 20%. With this increase, the power

consumed refreshing L3 and operating the counters is still 92%

lower than the baseline.

8. Related Work

Several approaches have been proposed to reduce the leakage

(in SRAMs) or refresh (in eDRAMs/DRAMs) power in memory

subsystems. One approach is to exploit the access patterns to

the cache or memory. A second one is to take advantage of

the intrinsic variation in the retention time of eDRAM lines or

DRAM rows to save refresh power. A third one involves the use

of error-correction codes (ECC) and tolerating errors.

As examples of the first class of approaches targetting

SRAMs, we have Gated-Vdd [24] and Cache Decay [15, 35].

These schemes turn off cache lines that are not likely to be ac-

cessed in the near future, and thereby save leakage power. Cache

Decay relies on fine-grained logic counters, which are expensive,

especially for large lower-level caches. Drowsy Caches [8, 23]

periodically move inactive lines to a low power mode in which

they cannot be read or written. However, this scheme is less

applicable in deep-nm technology nodes, where the difference

between Vdd and Vt will be smaller.

Ghosh et al. [10] propose SmartRefresh, which reduces re-

fresh power in DRAMs by adding timeout counters per line.

This avoids unnecessary refreshes of lines that were recently

accessed. Refrint [1] uses count bits instead of counters to re-

duce the refresh power in eDRAM-based caches in two ways.

First, it avoids refreshing recently-accessed lines. Second, it

reduces unnecessary refreshes of idle data in the cache. Such

data is detected and then written back to main memory and

invalidated from the cache. Chang et al. [4] identify dead lines

in the last-level cache (LLC) using a predictor and eliminate

refreshes of it.

As part of the second class of approaches, there is work

focused on reducing the refresh power of dynamic memories by

exploiting variation in retention time. It includes RAPID [31],

the 3T1D-based cache [19], and RAIDR [21]. RAPID [31]

proposes a software-based mechanism that allocates blocks with

longer retention time before allocating the ones with a shorter

retention time. With RAPID, the refresh period of the whole

cache is determined only by the used portion.

The 3T1D-based cache [19] is an L1 cache proposal that

uses a special type of dynamic memory cell where device varia-

tions manifest as variations in the data retention time. To track

retention times, the authors use a 3-bit counter per line, which in-

troduces a 10% area overhead. Using this counter, they propose

refresh and line replacement schemes to reduce refreshes.

RAIDR [21] is a technique to reduce the refresh power in

DRAM main memories. The idea is to profile the retention time

of DRAM rows and classify the rows into bins. A Bloom filter

is used to group the rows with similar retention times. There are



several differences between Mosaic and RAIDR. First, Mosaic

observes and exploits the spatial correlation of retention times,

while RAIDR does not. In DRAMs, an access or a refresh

operates on a row that is spread over multiple chips, which have

unknown correlation. Mosaic can be applied to DRAMs if the

interface is augmented to support per-chip refresh.

Second, RAIDR classifies rows in a coarse manner, working

with bins that are powers of 2 of the baseline (i.e., bins of t, tx2,

tx4, tx8, etc.). Therefore, many bins are not helpful because the

bins for the higher retention times quickly become too coarsed-

grained to be useful. Mosaic tracks the retention time of lines

in a fine-grained manner, using fixed-distance bins (i.e., t, tx2,

tx3, tx4, etc.). This allows it to have tens of bins (64 with a 6-bit

counter) and hence enables more savings in refresh power.

Finally, the RAIDR algorithm takes longer to execute with

increasing numbers of bins. With 8 bins, in the worst case, it

requires 7 Bloom filter checks for every line. Hence, RAIDR

only uses 3 bins. The Mosaic implementation using a counter is

simple and scalable.

The third class of approaches involves using ECC to enable

a reduction in the refresh power [7]. ECC can tolerate some

failures and, hence, allow an increase in the refresh time —

despite weak cells. As a result, it reduces refresh power. One

example of this approach is Hi-ECC [34], which reduces the

refresh power of last-level eDRAM caches by 93%. The area

overheads and refresh power reduction achieved by Hi-ECC and

Mosaic are similar. However, Mosaic improves execution time

by 9%, while Hi-ECC does not affect the execution time.

9. Conclusion

This paper has presented a new model of the retention times

in large on-chip eDRAM modules. This model, called Mo-

saic, showed that the retention times of cells in large eDRAM

modules exhibit spatial correlation. Based on the model, we

proposed the simple Mosaic tiled organization of eDRAM mod-

ules, which exploits this correlation to save much of the refresh

energy at a low cost.

We evaluated Mosaic on a 16-core multicore running 16-

threaded applications. We found that Mosaic is both inexpensive

and very effective. An eDRAM L3 cache augmented with

Mosaic tiles increased its area by 2% and reduced the number of

refreshes by 20 times. This reduction is 5 times the one obtained

by taking the RAIDR scheme for main memory DRAM and

applying it to cache eDRAM. With Mosaic, we saved 43% of

the total energy in the L3 cache, and got very close to the lower

bound in refresh energy.
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