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A b s t r a c t  

On-chip caches represent a sizable fraction of the total 
power consumption of microprocessors. Although large 
caches can sigmficantly improve performance, they have 
the potential to increase power consumption. As feature 
sizes shrink, the dominant component of this power loss will 
be leakage. However, during a fixed period of time the activ- 
ity in a cache is only centered on a small subset of the lines. 
This behavior can be exploited to cut the leakage power of 
large caches by putting the cold cache lines into a state pre- 
serving, low-power drowsy mode. Moving lines into and out 
of drowsy state incurs a slight performance loss. In this 
paper we investigate policies and circuit techniques for 
implementing drowsy caches. We show that with simple 
architectural techniques, about 80%-90% of the cache lines 
can be maintained in a drowsy state without affecting per- 
formance by more than 1%. According to our projections, in 
a O.07um CMOS process, drowsy caches will be able to 
reduce the total energy (static and dynamic) consumed in 
the caches by 50%-75%. We also argue that the use of 
drowsy caches can simpli y the design and control of low- 
leakage caches, and avoid the need to completely turn off 
selected cache lines and lose their state. 

1. I n t r o d u c t i o n  

Historically one of  the advantages of  CMOS over com- 
peting technologies (e.g. ECL) has been its lower power 
consumption. When not switching, CMOS transistors have, 
in the past, consumcd negligible amounts of  power. How- 
ever, as the speed of  these devices has increased along with 
density, so has their leakage (static) power consumption. We 
now estimate that it currently accounts for about 15%-20% 
of  the total power on chips implemented in high-speed pro- 
cesses. Moreover, as processor technology moves below 0.1 
micron, static power consumption is set to increase expo- 
nentially, setting static power consumption on the path to 
dominating the total power used by the CPU (see Figure 1). 

Various circuit techniques have been proposed to deal 
with the leakage problem. These techniques either com- 
pletely turn off  circuits by creating a high-impedance path 
to ground (gating) or trade off  increased execution time for 
reduced static power consumption. In some cases, these 
techniques can be implemented entirely at the circuit level 

without any changes to the architecture or may involve only 
simple architectural modifications. The on-chip caches are 
one of  the main candidates for leakage reduction since they 
contain a significant fraction of  the processor's transistors. 

Approaches for reducing static power consumption of  
caches by turning off  cache lines using the gated-VoD tech- 
nique [1] have been described in [2][3]. These approaches 
reduce leakage power by selectively turning off  cache lines 
that contain data that is not likely to be reused. The draw- 
back of  this approach is that the state of  the cache line is lost 
when it is turned off  and reloading it from the level 2 cache 
has the potential to negate any energy savings and have a 
significant impact on performance. To avoid these pitfalls, it 
is necessary to use complex adaptive algorithms and be con- 
servative about which lines are turned off. 

Turning off cache lines is not the only way that leakage 
energy can be reduced. Significant leakage reduction can 
also be achieved by putting a cache line into a low-power 
drowsy mode. When in drowsy mode, the information in the 
cache line is preserved; however, the line must be reinstated 
to a high-power mode before its contents can be accessed. 
One circuit technique for implementing drowsy caches is 

FIGURE 1. Normalized leakage power through an inverter 
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The circuit simulation parameters including threshold voltage were obtained 
from the Berkeley Predictive Spice Models [4]. The leakage power numbers 
were obtained by HSPICE simulations. 
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FIGURE 2. Implementation of the drowsy cache line 
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Note that, for si.mplicity, the word line, bit lines, and two pass transistors in the 
drowsy bit are' not shown in this picture. 

adaptive body-biasing with multi-threshold CMOS (ABB- 
MTCMOS) [5], where the threshold ,voliage of  a cache line 

• is increased dynamically to yield reduction in leakage 
energy. We propose a simpler and more effective circuit 
technique for implementirig drowsy caches, where one can 
choose between two different supply voltages in each cache 
line. Such a dynamic voltage scaling or selection (DVS) 
technique has been used in the past to trade off  dynamic 
power consumption and performance [6][7][8]. In this case, 
however, we exploit voltage scaling to reduce static power  
consumption. Due to short-channel effects in deep-submi- 
cron processes, leakage current reduces significantly with 
voltage scaling [9]. The combined effect of  reduced leakage 
current and voltage yields a dramatic reduction in leakage 
power. 

On a per-bit basis, drowsy caches do not reduce leakage 
energy as much as those that rely on gated-VDD. However, 
we show that for the total power consumption of  the cache, 
drowsy caches can get close to the theoretical minimum. 
This is because the fraction of total energy consumed by the 
drowsy cache in low power mode (after applying our algo- 
rithms) tends to be 0nly 'about 25%. Reducing this fraction 
further may be possible but the pay-off is not great 
(Amdahl's Law). Moreover, since the penalty for waking up 
a drowsy line is relatively small (it requires little energy and 
only 1 or.2 cycles, depending on circuit parameters), cache 
lines can be put into drowsy mode more aggressively , thus 
saving more power. 

Figure 2 shows the changes necessary for implement- 
ing a cache line that supports a drowsy mode. There are 
very few additions required to a standard cache line. The 
main additions are a drowsy bit, a mechanism for control- 
ling the voltage to the memory cells, and a word line gating 
circuit. In order to support the drowsy mode, the cache line 
circuit includes two more transistors than the traditional 
memory circuit. The operating voltage of  an array of  mem- 
ory cells in the cache line is determined by the voltage con- 
troller, which switches the array voltage between the high 
(active) and low (drowsy) supply voltages depending on the 
state of  the drowsy bit. If  a drowsy cache line is accessed, 
the drowsy bit is cleared, and consequently the supply volt- 
age is switched to high VDD.The wordline gating circuit is 

used to prevent accesses when in drowsy mode, since the 
supply voltage of  the drowsy cache line is lower than the bit 
line precharge voltage; unchecked accesses to a drowsy line 
could destroy the memory's contents. 

Whenever a cache line is accessed, the cache controller 
monitors the condition of  the voltage o f  the cache line by 
reading the drowsybiL If the accessed line is in normal 
mode, we can read the contents o f  the cache line without 
losing any performance. No performance penalty is 
incurred, because the power mode of  the line can be 
checked by reading the drowsy bit concurrently with the 
read and comparison of  the tag. However; if  the memory 
array is in drowsy mode, we need to prevent the discharge 
of  the bit lines of  the memory array because it may read out 
incorrect data. The line is woken 'up automatically during 
the next cycle, an d the data can be accessed duringconsecu- 
tire cycles. 

In this paper we focus on the policy iml61ications of  
using LI drowsydata  caches. Since, compared to the L1 
cache, the impact of  an extra cycle of  wake-up on 'the L2 
access latencies is small, all lines in an L2 cache can be kept 
in drowsy mode without significant impact on performance. 
This intuition is confirmed by the data presented in [10]. In 
Section 2 and Section 3 we evaluate the design trade-offs 
between simple drowsy policies. We argue that the simplest 
policy of  periodically putting the entire cache into drowsy 
mode does about as well as a policy that tracks accesses to 
cache lines. Section 4 provides details about various circuit 
techniques for reducing leakage power and Section 5 evalu- 
ates the impact of  drowsy caches on energy consumption. 

p 

2. Policies 

The keydifference between drowsy caches and ca.ches 
that use gated-VDD is that in drow.sy caches the cost of  
being wrong-:putting a line into drowsy mode that is 
accessed soon thereafter--is relatively small. The only pen- 
alty one must contend with is an additional delay and energy 
cost for having to wake up a drowsy line. One of  the sim- 
plest policies that one might consider is one where, periodi- 
cally, all lines in the cache--regardless of  access patterns-- 
are put into drowsy m0de and a line is woken up only when 
it is accessed again. This policjt ri~quires only a single global 
counter and no per-line statistics. Table 1 sfiowsthe wgrking 
set characteristics of some of  our workloads using a 2000 
cycle update window, meaning that all cache lines are put 
into drowsy mode every 2000 cycles. Observations of  cache 
activity are made over this same period. Based on this infor- 
mation we can estimate how effective this simpleminded 
policy could be. 

The results show that on most of  the benchmarks the 
working set-- the fraction of  unique cache lines accessed 
during an update window--is  relatively small. On most 
benchmarks more than 90% of  the lines can be in drowsy 
mode at any one time. This has the potential to significantly 
reduce the static power consumption of  the cache. The 
downside of  the approach is that the wake-up cost has to be 
amortized over a relatively small number of  accesses: 
between 7 and 21, depending on the benchmark. 
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T A B L E  1. W o r k i n g  s e t  a n d  r e u s e  c h a r a c t e r i s t i c s  

crafty 

vor tex 

bzip 

vpr 

mcf 

parser 

g c c  

facerec 

equake 

mesa 

Level 1 data cache 32K, 4-way, 32byte line, window size = 2000 cycles 

Working set Number  of Accesses per  line Accesses per 
accesses cycle 

17.6% 1250.56 6.95 0.63 

10.8% 1209.07 10.89 0.60 

5.9% 1055.84 17.35 0.53 

9.2% 1438.69 15.27 0.72 

8.9% 1831.68 20.05 0.92 

8.7% 971.73 10.85 0.49 

8.1% 809.69 9.78 0.40 

10.4% 970.04 9.15 0.49 

7.0% 1513.27 21.09 0.76 

8,0% 1537,09 18.69 0.77 

Fraction of  accesses  same as in the 
n th previous window 

n= l  n=8 n = 3 2  

65.2% 54.9% 49.3% 

54.3% 29.0% 31.0% 

32.5% 19.7% 17.2% 

62.2% 46.9% 45.6% 

61.0% 60.8% 60.4% 

46 .9% 34.6% 28.4% 

36.9% 24.9% 21.1% 

37.4% 27.5% 33.6% 

92.8% 91.4% 90.7% 

83.8% 76.8% 74.5% 

( w a k e l a l e n c v  x memimDact'~ 
accs l  ~ .. r ) + ( wstze - accs ) 

k ~lffs~CrllnC 
E x e c F a c t o r  = (EQ l) 

wsize  

Equation 1 shows the formula for computing the 
expected worst-case execution time increase for the baseline 
algorithm. All variables except m e m i m p a c t  are directly 
from Table 1. The variable a c c s  specifies the number of  
accesses, w a k e l a t e n c y  the wakeup latency, a c c s p e r l i n e  the 
number o f  accesses per line, and w s i z e  specifies the window 
size. Memimpact  can be used to describe how much impact 
a single memory  access has on overall performance. The 
simplifying assumption is that any increase in cache access 
latency translates directly into increased execution time, in 
which case memimpact  is set to 1. Using this formula and 
assuming a 1 cycle wake-up latency, we get a max imum of  
9% performance degradation for crafty and under 4% for 
equake. One can further refine the model by coming up with 
a more accurate value for memimpact .  Its value is a function 
of  both the microarchitecture and the workload: 

• The workload determines the ratio o f  the number o f  
memory  accesses to instructions. 

• The microarchitecture determines what fraction of  wake- 
up transitions can be hidden, i.e., not translated into glo- 
bal performance degradation. 

• The microarchitecture also has a significant bearing on 
IPC which in turn determines the number o f  memory  
accesses per cycle. 

Assuming that half  o f  the wake-up transition latencies 
can be hidden by the microarchitecture, and based on a ratio 
o f  0.63 of  memory  accesses per cycle, the prediction for 
worst-case performance impact for the crafty benchmark 
reduces to 2.8%. Similarly, using the figure of  0.76 memory  
accesses per cycle and the same fraction of  hidden wake-up 
transitions, we get a performance impact o f  about ! .4%. The 
actual impact o f  the baseline technique is likely to be signif- 
icantly lower than the results from the analytical model, but 

nonetheless, these results show that there is no need to look 
for prediction techniques to control the drowsy cache; as 
long as the drowsy cache can transition between drowsy and 
awake modes relatively quickly, simple algorithms should 
suffice. 

The right side o f  Table 1 contains information about 
how quickly the working set o f  the workloads are changing. 
The results in the table specify what fraction of  references in 
a window are to lines that had been accessed 1, 8, or 32 win- 
dows before. This information can be used to gauge the 
applicability o f  control policies that predict the working set 
o f  applications based on past accesses. As can be seen, on 
many  benchmarks (e.g. bzip, gcc), a significant fraction o f  
lines are not accessed again in a successive drowsy window, 
which implies that past accesses are not always a good indi- 
cation o f  future use. Aside from the equake and mesa 
benchmarks, where past accesses do correlate well with 

TABLE 2.Latencies of accessing lines in the drowsy cache 

Awake Drowsy 

~ cycle 1 cycle - wake up line 
z 1 cycle - read/write line 

111 

1 cycle - find line to replace 
t~ 1 cycle - find line to replace memory latency 
~ memory Ihtency Over'lapped with memory latency: < 

wake up line. 

=o 
._= 
=E 

Awa ke D rowsy 
1 cycle - time for possible awake hit 
1 cycle - wake up drowsy lines in set 

1 cycle 1 cycle - read/write line 
Off-path: put unneeded lines in set 

back to drowsy mode 

All lines in set are awake Not all lines in set are awake 

1cycle - find line to replace 
memory latency 

Off-path: put unneeded lines 
in set back to drowsy mode 

1cycle -time for possible awake hit 
1cycle - wake up drowsy lines in set 

1cycle - find line to replace 
memory Latency 

Off-path: put unneeded lines in set 
back to drowsy mode 
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FIGURE 3. Impact of window size on performance and on the fraction of drowsy l ines 
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future accesses , most benchmarks only reaccess 40%-60% 
of the lines between windows. The implications of  this 
observation are twofold: If  an algorithm keeps track of  
which cache lines are accessed in a window, and only puts 
the ones into drowsy mode that have not been accessed in a 
certain number of  past windows, then the number of  awake 
to drowsy transitions per window can be reduced by about 
50%. This in turn decreases the number of  later wakeups, 
which reduces the impact on execution time. However, the 
impact on energy savings Is negative since a larger fraction 
of  lines are kept in full power mode, and in fact many of  
those lines will not be accessed for the next several win- 
dows, if at all. 

Another important consideration is whether the tags are 
put into drowsy mode along with the data or whether they 
are always on. Table 2 shows the latencies associated with 
the different modes of  operation. In both cases, no extra 
latencies are involved when an awake line is accessed. If  
tags are always on, then the cost of  accessing a drowsy line 
is an additional cycle for waking it up first. Hits and misses 
are determined the same way as in normal caches. However, 
if tags--along with the data--can be drowsy, then the situa- 
tion gets more complicated. Access hits to an awake cache 
line take a single cycle just as in the first case, however 
access hits to a drowsy line take a cycle longer. The reason 
for the extra delay is that during the first access cycle the 
cache is indexed, awake lines are read out and their tags are 
compared. If none of  the awake tags match after the first 
read, then the controller wakes up all the drowsy lines in the 
indexed set and only then, an additional cycle later, can it 
read and compare the data. Thus, a drowsy access takes at 
least three cycles to complete. Another issue is that when 
drowsy lines are woken up in a set just so that their tags can 
be compared, they should be put back to sleep soon thereaf- 
ter. It is not likely that these lines will be accessed soon, 
since in that case they would have been awake already. The 
controller can easily put these lines back into drowsy mode 
without having to wait for the sleep transition to complete. 

Note that in direct-mapped caches there is no perfor- 
mance advantage to keeping the tags awake. There is only 
one possible line for each index, thus if that line is drowsy, it 
needs to be woken up immediately to be accessed. 

3. Policy evaluation 
In this section we evaluate the different policy configu- 

rations with respect to how they impact performance and the 
fraction of  cache lines that are in drowsy mode during the 
execution of  our benchmarks. All our algorithms work by 
periodically evaluating the contents of  the cache and selec- 
tively putting lines into drowsy mode. The following 
parameters can be varied: 

• Upda te  w i n d o w  size: specifies in cycles how frequently 
decisions are made about which lines to put into drowsy 
mode. 

• S i m p l e  or  N o a c c e s s  pol icy:  The policy that uses no per- 
line access history is referred to as the s imple  policy. In 
this case, all lines in the cache are put into drowsy mode 
periodically (the period is the window size). The noac-  
eess  policy means that only lines that have not been 
accessed in a window are put into drowsy mode. 

• A wake  or d r o w s y  tag: specifies whether tags in the cache 
may be drowsy or not. 

• Transi t ion time: the number of  cycles for waking up or 
putting to sleep cache lines. We only consider 1 or 2 
cycle transition times, since our circuit simulations indi- 
cate that these are reasonable assumptions. 

We use various benchmarks from the SPEC2000 suite 
on SimpleScalar using the Alpha instruction set to illustrate 
our points. Most of  the results are shown using the out-of- 
order core in SimpleScalar. However, when appropriate we 
also show results for a simpler in-order core. The simulator 
configuration parameters are summarized below: 

• 0 0 4 :  4-wide superscalar pipeline, 32K direct-mapped 
L1 icache, 32 byte line size - 1 cycle hit latency, 32K 4- 
way set associative L 1 dcache, 32 byte line size - 1 cycle 
hit latency, 8 cycle L2 cache latency. 

• I 0 2 :  2-wide in-order pipeline, cache parameters same as 
for 0 0 4 .  

All simulations were run for 1 billion instructions. 

Figure 3 shows how window size impacts performance 
and the fraction of  drowsy lines. For clarity, we are showing 
only a subset of  the benchmarks. On an out-of-order core, 
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FIGURE 4. Impact of increased drowsy access latencies 
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the sweetspot- -where  the energy-delay product is maxi- 
mized- - i s  around 2000 cycles. The same spot moves  to 
between a window size o f  4000 and 8000 cycles on the in- 
order core. The reason for this is that since the IPCs of  the 
benchmarks using the 102 model tend to be a little less than 
half  as much as in the 0 0 4  model, fewer memory  accesses 
are made within the same amount of  clock cycles. Since 
both the drowsy cache's  run-time overhead and its effective- 
ness are correlated with the number of  cache accesses 
within a window, comparable power-performance trade-off 
points are found at about twice the window size on the IO2 
model as on 0 0 4 .  Aside from the data for small window 
sizes, the two graphs look very similar. 

The reason for the relatively small impact o f  the 
drowsy wake-up penalty on the in-order processor 's  perfor- 
mance is due to the non-blocking memory  system, which 
can handle a number of  outstanding loads and stores while 
continuing execution of  independent instructions. More- 
over, the drowsy wake-up penalty is usually only incurred 
with load instructions, since stores are put into a write 
buffer, w h i c h - - i f  not fu l l - -a l lows execution to continue 
without having to wait for the completion of  the store 
instruction. 

The impact of  increased transition latencies is shown in 
Figure 4. The top graph in the figure shows the impact o f  
doubled wakeup latency using the simple policy, while the 
bottom graph shows the impact on the noaccess policy due 
to the use of  drowsy tags. In both graphs, the two end points 
o f  a line represent the two different configurations o f  each 
benchmark. Both o f  the different types o f  overhead have 
similar impact on the given policy: the fraction o f  drowsy 
lines is unchanged, while the impact on run-time increases 
(the lines connecting the two points are horizontal and the 
points corresponding to the two cycle wakeup or the drowsy 
tags are always on the right). The run-time impact on the 
simple policy is larger compared to the noaccess policy, 
since a larger fraction of  the cache is drowsy at any one 
time. Also note that for a given policy, the run-time over- 
head of  using drowsy tags should be very similar to increas- 
ing the transition latency to two cycles. This is because both 
models increase the most  common type of  drowsy acce s s - -  
the drowsy h i t - - by  the same amount. 
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Figure 5 contrasts the noaccess and the simple policies. 
The main question that we are trying to answer is whether 
there is a point to keeping any per-line statistics to guide 
drowsy decisions or if  the indiscriminate approach is good 
enough. We show three different configurations for each 
benchmark on the graph: the noaccess policy with a 2000 
cycle window and two configurations o f  the simple policy 
(4000 cycle and 2000 cycle windows). In all cases, the pol- 
icy configurations follow each other from bottom to top in 
the aforementioned order. This means that in all cases, the 
noaccess policy has the smallest fraction of  drowsy lines, 
which is to be expected, since it is conservative about which 
lines are put into drowsy mode. In all configurations, the 
performance impact is never more than 1.2% and the frac- 
tion of  drowsy lines is never under 74%. 

FIGURE 5. Comparison of the noaccess and simple policies 
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The bottom marker on each line corresponds to the noaccess policy with 
2000 cycle window, the markers above it represent the simple policy with 
4000 and 2000 cycle windows respectively 
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The benchmarks on the graph can be partitioned into 
two groups: ones on lines whose slopes are close to the ver- 
tical, and ones on lines that are more horizontal and thus 
have a smaller positive slope. All the benchmarks that are 
close to the vertical are floating point benchmarks and their 
orientation implies that there is very little or no performance 
benefit to using the n o a c c e s s  policy or larger window sizes. 
In fact, the mgfid, gaigel, applu, facerec, and lucas bench- 
marks have a slight negative slope, implying that not only 
would the simpler policy win on power savings, it would 
also win on performance. However, in all cases the perfor- 
mance difference is negligible and the potential power 
improvement is under 5%. The reason for this behavior is 
the very bad reuse characteristics of  data accesses in these 
benchmarks. Thus keeping lines awake (i.e. n o a c c e s s  pol- 
icy, or larger window sizes) is unnecessary and even coun- 
terproductive. 

This anomalous behavior is not replicated on the inte- 
ger benchmarks, where in all cases the n o a c c e s s  policy wins 
on performance but saves the least amount of  power. Does 
this statement imply that if performance degradation is an 
issue then one should go with the more sophisticated n o a c -  
ce s s  policy? It does not. The slope between the upper two 
points on each line is almost always the same as the slope 
between the bottom two points, which implies that the rates 
of  change between the datapoints of  a benchmark are the 
same; the data point for the n o a c c e s s  policy should be able 
to be matched by a different configuration of  the s i m p l e  pol- 
icy. We ran experiments to verify this hypothesis and found 
that a window size of 8000 of  the s i m p l e  policy comes very 
close to the coordinates for the n o a c c e s s  policy with a win- 
dow size o f  2000. 

We find that the s i m p l e  policy with a window size of 
4000 cycles reaches a reasonable compromise between sim- 
plicity o f  implementation, power savings, and performance. 
The impact of  this policy on leakage energy is evaluated in 
Section 5. 

4. Circuit  issues 

Traditionally, two circuit techniques have been used to 
reduce leakage power in CMOS circuits: VDo-gating and 
ABB-MTCMOS. Recently, both of  these methods were 
applied to cache design as well [2][3][10]. In this paper, we 
instead propose the use of  dynamic voltage scaling (DVS) 
for leakage control. While voltage scaling has seen exten- 
sive use for dynamic power reduction, short-channel effects 
also make it very effective for leakage reduction. Below, we 
discuss the traditional VDD-gating and ABB-MTCMOS 
techniques for cache leakage reduction, as well as our pro- 
posed method using dynamic voltage scaling and a compar- 
ison between the different methods. 

4.1 Gated-VDD 
The gated-Voo structure was introduced in [1]. This 

technique reduces the leakage power by using a high thresh- 
old (high-Vt) transistor to turn off the  power to the memory 
cell when the cell is set to low-power mode. This high-V t 
device drastically reduces the leakage of  the circuit because 
of  the exponential dependence of  leakage on V t. While this 
method is very effective at reducing leakage, its main disad- 
vantage lies in that it loses any information stored in the cell 
when switched into low-leakage mode. This means that a 

significant performance penalty is incurred when data in the 
cell is accessed and more complex and conservative cache 
policies must be employed. 

4.2 A B B - M T C M O S  
The ABB-MTCMOS scheme was presented in [5]. In 

this method, the threshold voltages o f  the transistors in the 
cell are dynamically increased when the cell is set to drowsy 
mode by raising the source to body voltage of  the transistors 
in the circuit. Consequently, this higher V t reduces the leak- 
age current while allowing the memory cell to maintain its 
state even in drowsy mode. However, to avoid the need for a 
twin-well process, the dynamic V t scaling is accomplished 
by increasing the source of  the NMOS devices and by 
increasing the body voltage of  the wells of the PMOS 
devices significantly when the circuit is in drowsy mode. 
While the leakage current through the memory cell is 
reduced significantly in this scheme, the supply voltage of  
the circuit is increased, thereby offsetting some of  the gain 
in total leakage power. 

Also, this leakage reduction technique requires that the 
voltage of  the N-well and of  the power and ground supply 
lines are changed each time the circuit enters or exits 
drowsy mode. Since the N-well capacitance of the PMOS 
devices is quite significant, this increases the energy 
required to switch the cache cell to high-power mode and 
can also significantly increase the time needed to transition 
to/from drowsy mode. Similarly to the gated-VDD technique, 
ABB-MTCMOS also requires special high-V t devices for 
the control logic. 

4.3 D y n a m i c  VDD Sca l ing  (DVS)  

The method proposed in this paper utilizes dynamic 
voltage scaling (DVS) to reduce the leakage power of  cache 
cells. By scaling the voltage of  the cell to approximately 1.5 
times Vt, the state of  the memory cell can be maintained. 
For a typical 0.07urn process, this drowsy voltage is conser- 
vatively set to 0.3V. Due to the short-channel effects in 
high-performance processes, the leakage current will reduce 
dramatically with voltage scaling. Since both voltage and 
current are reduced in DVS, a dramatic reduction in leakage 
power can be obtained. Since the capacitance o f  the power 
rail is significantly less than the capacitance of  the N-wells, 
the transition between the two power states occurs more 

FIGURE 6. Schematic of the drowsy memory circuit 
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FIGURE 7. Leakage power reduction and performance 
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The figure shows various V t numbers (next to the data points) and how these 
values impact performance and leakage reduction. 

quickly in the DVS scheme than the ABB-MTCMOS 
scheme. 

Figure 6 illustrates the circuit schematic of  memory  
cells connected to the voltage-scaling controller. High-V t 
devices are used as the pass transistors that connect the 
memory ' s  internal inverters to the read/write lines (N 1 and 
N2). This is necessary because the read/write lines are 
maintained in high-power mode and the leakage through the 
pass transistors would be too large otherwise. One PMOS 
pass gate switch supplies the normal supply voltage and the 
other supplies the low supply voltage for the drowsy cache 
line. Each pass gate is a high-V t device to prevent leakage 
current from the normal supply to the low supply through 
the two PMOS pass gate transistors. A separate voltage con- 
troller is needed for each cache line. 

In determining the high-V t value for the access transis- 
tors o f  the memory cell (N 1 and N2) we must consider the 
leakage power reduction as well as the performance impact 
o f  using a high-V t device. Figure 7 shows leakage power 
reduction versus performance impact for various V t values. 
Our HSPICE simulations using access transistors with 0.2V 
V t show that the portion of  leakage power caused by the 
pass transistors is 16.78% and 71.77% for normal and low 
supply voltage modes respectively. These values are quite 
significant. As we increase V t o f  the access transistors 
towards 0.35V, the leakage power decreases exponentially 
and it approaches the maximum reduction ratio (92.15%) 
that can be achieved by eliminating leakage current entirely 
through the access transistor. 

To estimate the performance degradation from increas- 
ing Vt, we measured the delay from the word line assertion 
to the point where there is a 50mV voltage difference 
between two complementary bit lines using a netlist with 
extract capacitances. This voltage difference is the threshold 
for sense-amp activation. The value o f  50mV was obtained 
by conservatively scaling the value used in the former mem- 
ory design technology [ 11 ]. Clearly the delay is increased as 
the V t is increased as shown in Figure 7, but the fraction o f  
the delay from the word line activation to the sense-amp 
activation is only about 22% among other delay factors that 

FIGURE 8. Cross-talk stability of the drowsy memory cell 
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Simulation of a write operation to the normal mode (awake) memory cell 
adjacent to a drowsy memory cell. 

contribute to the total access time o f  the memory  system, 
according to our CACTI calculations. We chose 0.3V for 
the high-V t value because it results in a sensible trade-off 
point between performance loss (6.05%) and leakage reduc- 
tion (91.98%). However, we can compensate for the perfor- 
mance loss by carefully tuning the size of  the access and 
cross-coupled inverter transistors. We have not done so in 
this study because it may increase the dynamic power dissi- 
pation as a result o f  the increase in switching capacitance of  
the bit lines. 

A possible disadvantage o f  the circuit in Figure 6 is that 
it has increased susceptibility to noise and the variation o f  
V t across process corners. The first problem may be cor- 
rected with careful layout because the capacitive coupling 
o f  the lines is small. To examine the stability of  a memory  
cell in the low power mode, we simulated a write operation 
to an adjacent memory  cell that shares the same bit lines but 
whose supply voltage was normal. The coupling capaci- 
tance and the large voltage swing across the bit lines would 
make the bit in the drowsy memory  cell vulnerable to flip- 
ping if  this circuit had a stability problem. However, our 
experiments show (Figure 8) that the state o f  the drowsy 
memory  cell is stable. There is just a slight fluctuation in the 
core node voltage caused by the signal cross-talk between 
the bit lines and the memory  internal nodes. In addition, 
there is no cross-talk noise between the word line and the 
internal node voltage, because word line gating prevents 
accesses to drowsy mode memory cells. O f  course, this volt- 
age scaling technique has less immunity against a single 
event upset (SEU) from alpha particles [12], but this prob- 
lem can be relieved by process techniques such as silicon on 
insulator (SOl). Other static memory  structures also suffer 
from this problem. The second problem, variation o f  V t, 
may be handled by choosing a conservative VDD value, as 
we have done in our design. 

The memory  cell layout was done in TSMC 0.18urn 
technology, which is the smallest feature size available to 
the academic community. The dimensions o f  our memory  
cell is 1.84urn by 3.66um, and those for the voltage control- 
ler are 6.18urn by 3.66um. We estimate the area overhead o f  
the voltage controller is equivalent to 3.35 memory  cells for 
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TABLE 3. Comparison of various low-leakage circuit techniques 

DVS 

Advantages 

Retains cell information in low-power mode. 
• Fast switching between power modes. 
• Easy implementation. 

• More power reduction than ABB-MTCMOS. 

Disadvantages 

• Fast switching between power modes. 

• Easy implementation. 

• Process variation dependent. 

• More SEU noise susceptible. 

L.eakage power 
in low power 

mode 

• Loses cell information in low-power mode. 

6.24nW 

ABB- • Higher leakage power. 
MTCMOS • Retains cell information in low-power mode. 13.20nW 

• Slower switching between power modes. 

• Largest power reduction. 
Gated-VDD 0.02nW 

a 64 x Leff (effective gate length) voltage controller. This 
relatively low area overhead can be achieved because the 
routing in the voltage controller is simple compared to the 
memory cell. In addition, we assumed the following (con- 
servative) area overhead factors: 1) 1.5 equivalent memory 
cells for the drowsy bit (the 0.5 factor arises from the two 
additional transistors for set and reset); 2) 1 equivalent 
memory cell for the control signal driver (two inverters); 
and 3) 1.5 equivalent memory cells for the wordline gating 
circuit (a nand gate). The total overhead is thus equivalent 
to 7.35 memory cells per cache line. The total area overhead 
is less than 3% for the entire cache line. To examine the 
effects of  circuit issues like stability and leakage power 
reduction, we applied a linear scaling technique to all the 
extracted capacitances. 

In Table 3, we list the advantages and disadvantages for 
the two traditional circuit techniques for leakage reduction 
as well as for DVS, and we show the power consumption 
for the three schemes in both normal and low power mode. 
The leakage power in the gated-VoD method is very small 
compared to the other schemes, however, this technique 
does not preserve the state of  the cache cell. Comparing the 
DVS and ABB-MTCMOS techniques, the DVS method 
reduces leakage power by a factor o f  12.5, while the ABB- 
MTCMOS method reduces leakage by only a factor of  5.9. 

Detailed power values for drowsy mode and normal- 
power mode for the proposed method are shown in Table 4. 
In order to determine the time required to switch a cache 
line from drowsy mode to normal power mode, we mea- 
sured the delay time of  the supply lines with HSPICE and 
the Berkeley Predictive Model [4] for a 0.07um process. To 
measure the transition delay, we connected a 32KB memory 
cell array to the supply voltage controllers and then esti- 
mated the capacitances of  the supply voltage metal line and 
bit lines. The transition delay varies depending on the tran- 
sistor width of  the pass gate switch in the voltage controller. 

A 16 x Left  PMOS pass-transistor is needed for a two cycle 
transition delay. A single cycle transition delay can be 
obtained by increasing the width of  this transistor to 64 x 
Left. The cycle time of  the cache was estimated using the 
CACTI model with the supported process scaling. We found 
that the access time of  the cache is 0.57ns and that the tran- 
sition time to and from drowsy mode is 0.28ns with a 64 x 
Left  width PMOS pass-transistor in the normal mode volt- 
age supplier. 

5. E n e r g y  consumption 
Table 5 compares the energy savings due to the simple 

policy with a window size of  4000 cycles and with and 
without the use of  drowsy tags. Normalized total energy is 
the ratio of  total energy used in the drowsy cache divided by 
the total energy consumed in a regular cache. Similarly, nor- 
malized leakage energy is the ratio of  leakage energy in the 
drowsy cache to leakage energy in a normal cache. The data 
in the DVS columns correspond to the energy savings 
resulting from the scaled-VDo (DVS) circuit technique while 
the theoretical minimum column assumes that leakage in 
low-power mode can be reduced to zero (without losing 
state). The theoretical minimum column estimates the 
energy savings given the best possible hypothetical circuit 
technique. For all the results in the table, we conservatively 
assume that there are only 19 tag bits (corresponding to 32 
bit addressing) per line, which translates into 6.9% of  the 
bits on a cache line. 

The table shows that our implementation of  a drowsy 
cache can reduce the total energy consumed in the data 
cache by more than 50% without significantly impacting 
performance. Total leakage energy is reduced by an average 
of  71% when tags are always awake and by .an average of 
76% using the drowsy tag scheme. Leakage energy could 
potentially be cut in half if  the efficiency of  the drowsy cir- 

TABLE 4. Energy parameters and drowsy transition time for 32-KB 4-way set associative cache with 32Wmin for 
voltage controller switch size 

Dynamic energy per Leakage energy Drowsy leakage Transition energy Drowsy transition 
access per bit energy per bit (W=64Leff) latency 

2 . 9 4 E - 1 0 J  1 .63E-15J  2 .59E-  16J 2 .56E-11J  1 cyc le  
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TABLE 5. Normalized energy results and run-time increase for the 0 0 4  core, simple policy, 1 cycle drowsy 
transition, 4000 cycle window for both awake and drowsy tags 

Normalized leakage energy Run-time Normalized total energy 

ammp 
applu 
apsi 
art 
bzip2 
crafty 
con 
equake 
facerec 
fma3d 
galgel 
gap 
gcc 
gzip 
Iucas 
mcf 
mesa 
mgrid 
parser 
sixtrack 
swim 
twolf 
vortex 
vpr 
wupwise 

Normalized total energy 

DVS Theoretical rain. 

0.25 
0.47 
0.46 
0.39 
0.45 
0.53 
0.55 
0.50 
0.46 
0.41 
0.52 
0.52 
0.43 
0.46 
0.43 
0.55 
0.5t 
0.47 
0.46 
0.48 
0.40 
0.40 
0.49 
0.51 
0.36 

Awake ta~ls 

OVS Theoretical rain. 

0.11 0.24 
0.36 0.33 
0.36 0.30 
0.27 0.32 
0.34 0.26 
0.44 0.34 
0.47 0.32 
0.41 0.27 
0.36 0.29 

0.09 
0.20 
0.17 
0.19 
0.12 
0.22 
0.19 
0.13 
0.15 

0.30 
0.42 
0.43 
0.32 
0.36 
0.32 
0.46 
0.42 
0.36 

• increase 

0.66% 
0.42% 
0.06% 
0.66% 
0.59% 
0.45% 
0.40% 
0.08% 
0.46% 

DVS Theoretical rain. 

0.20 0.05 
0.43 0.32 
0.43 0.32 
0.35 0.22 
0.41 0.30 
0.50 0.41 
0.52 0.43 
0.47 0.37 
0.42 0.31 

Drowsy ta~ls 
Normalized leakage energy 

DVS Theoretical rain. 

0.18 0.03 
0.28 0.14 
0.25 0.11 
0.27 0.13 
0.21 0.06 
0.29 0.16 
0.27 0.13 
0.21 0.06 
0.24 0.09 

Run-time 

increase 

1.33% 
0.84% 
0.22% 
1,32% 
1.23% 
0.92% 
0.64% 
0.20% 
0.87% 

0.26 
0.37 
0.28 
0.28 
0.28 
0.25 
0.28 
0.27 
0.33 

0.12 
0.25 
0.14 
0.14 
0.14 
0.11 
0.15 
0.14 
0.20 

0.35 
0.38 
0.28 
0.28 
0.39 
0.42 
0.24 

0.10% 
0.34% 
0.26% 
0.65% 
0.83% 
0.04% 
0.11% 
0.14% 
0.52% 

0.37 0.25 
0.49 0.39 
0.49 0.40 
0.39 0.27 
0.43 0,32 
0.39 0,27 
0.52 0.42 
0.48 0,38 
0.43 0,32 

0.20 0.05 
0.32 0.19 
0.22 0.08 
0.23 0.08 
0.22 0.07 
0.20 0.05 
0.23 0.08 
0.22 0.07 
0.28 0.14 

0.08% 
0.69% 
0.63% 
1.25% 
1.87% 
0.12% 
0.22% 
0.30% 
0.97% 

0.28 
0.31 
0.30 
0.27 
0.30 
0.29 
0.24 

0.15 
0.18 
0.16 
0.13 
0.16 
0.15 
0.09 

IAverage II 0.46 0.35 [ 0.29 0.15 

1.03% 
0.33% 
0.56% 
0.69% 
0.29% 
0.51% 
0.07% 

0.41% 

0.42 0.31 
0.44 0.34 
0.36 0.24 
0.35 0.23 
0.46 0.35 
0.48 0.38 
0.31 0.18 

0.42 0.31 

0.23 0.08 
0.26 0.11 
0.24 0.10 
0.22 0.07 
0.24 0.10 
0.23 0.09 
0.18 0.02 

0.24 0.09 

2.09% 
0.65% 
1.14% 
1.48% 
0.60% 
1.25% 
0.13% 

0.84% 

cuit techniques are improved (see the theoretical minimum 
column). However, the benefits of  any further reduction o f  
leakage in drowsy mode are tempered by the fact that lines 
must still spend time in full-power mode when being 
accessed, and consequently their leakage power consump- 
tion is at least an order of  magnitude higher. Thus, the 
impact of more efficient drowsy circuits on total energy sav- 
ings is reduced. Nonetheless, if  there are circuits that are 
more efficient without significantly increasing the transition 
time, the simple policy can take advantage o f  it. 

An important question is whether it is worth using the 
more complex drowsy tag scheme. The energy-delay prod- 
uct of  the benchmarks when using drowsy tags are always 
lower than without. So the decision about whether to use 
drowsy tags or not comes down to acceptable engineering 
trade-offs. Also note that in direct-mapped caches, tags can 
be put into drowsy mode without undue performance impact 
or implementation complexity (see Section 2). However, 
using a direct mapped data cache instead of  the 4-way asso- 
ciative one has its own costs: miss rates on our benchmarks 
are approximately tripled, which--aside from the perfor- 
mance penal ty--can significantly impact the total energy 
consumption of  the processor. 

6. Conclusions and future work 

Dunng our investigations of  drowsy caches we found 
that our simplest pol icy--where cachelines are periodically 
put into a low-power mode without regard to their access 
histories--can reduce the cache's static power consumption 
by more than 80%. The fact that we do not propose a more 

sophisticated policy with better characteristics should not be 
taken as proof that such policy does not exist. However, we 
believe that our combination of  a simple circuit technique 
with a simple microarchitectural mechanism provides suffi- 
cient static power savings at a modest performance impact, 
that it makes sophistication a poor trade-off. The simple pol- 
icy is not a solution to all caches in the processor. In particu- 
lar, the LI instruction cache does not do as well with the 
simple algorithm and only slightly better with the noaccess 
policy. We are investigating the use o f  instruction prefetch 
algorithms combined with the drowsy circuit technique for 
reducing leakage power in the instruction caches. Our ongo- 
ing work also includes the extension of  our techniques to 
other memory structures, such as branch predictors. 

An open question remains as to the role ofadaptivity in 
determining the window size. We found that for a given 
machine configuration, a single static window size (2000 to 
8000 cycles, depending on configuration) performs ade- 
quately on all of  our benchmarks. However, the optimum 
varies slightly for each workload, thus making the window 
size adaptive would allow a finer power-performance trade- 
off. One way of  accomplishing this is by monitoring the 
microarchitecture and counting the number of  stall cycles 
that can be attributed to the drowsy wakeup latency, and 
only putting the cachelines into drowsy mode again after 
their previous wakeup overheads have been amortized (i.e. 
the performance impact falls under a given threshold). The 
user's preference for trading-off performance and power 
savings could be controlled by the setting of  the threshold 
value. 
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While our dynamic voltage scaling circuit does not 
offer the lowest leakage per bit, the fact that it maintains its 
stored value, allows for an aggressive algorithm when 
deciding which cache lines to put into drowsy mode.  Using 
our policy and circuit technique, the total energy consumed 
in the cache can be reduced by an average o f  54%. This 
compares  well with the theoretical max imum reduction o f  
65% corresponding to a hypothetical circuit that consumes 
no leakage energy in drowsy mode. Since the amount  o f  
leakage energy consumed in drowsy mode is only an aver- 
age o f  24% o f  total, further reductions o f  this fraction will 
yield only diminished returns. 

Moreover,  as the fraction o f  leakage energy is reduced 
from an average o f  76% in projected conventional caches to 
an avera.ge o f  50% in the drowsy cache, dynamic energy 
once again becomes a prime candidate for reduction. 
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