
ScalCore: Designing a Core for Voltage Scalability ∗

Bhargava Gopireddy, Choungki Song,† Josep Torrellas,
Nam Sung Kim, Aditya Agrawal,‡ and Asit Mishrag

University of Illinois †University of Wisconsin ‡NVIDIA Corp. gIntel Corp.
at Urbana-Champaign Madison

gopired2,torrella,nskim@illinois.edu

ABSTRACT
Upcoming multicores need to provide increasingly stringent
energy-efficient execution modes. Currently, energy efficiency
is attained by lowering the voltage (Vdd) through DVFS. How-
ever, the effectiveness of DVFS is limited: designing cores
for low Vdd results in energy inefficiency at nominal Vdd .

Our goal is to design a core for Voltage Scalability, i.e.,
one that can work in high-performance mode (HPMode) at
nominal Vdd , and in a very energy-efficient mode (EEMode)
at low Vdd . We call this core ScalCore. To operate energy-
efficiently in EEMode, ScalCore introduces two ideas. First,
since logic and storage structures scale differently with Vdd ,
ScalCore applies two low Vdds to the pipeline: one to the
logic stages (Vlogic) and a higher one to storage-intensive
stages. Secondly, ScalCore further increases the low Vdd of
the storage-intensive stages (Vop), so that they are substan-
tially faster than the logic ones. Then, it exploits the speed
differential by either fusing storage-intensive pipeline stages
or increasing the size of storage structures in the pipeline.
Our simulations of 16 cores show that a design with Scal-
Cores in EEMode is much more energy-efficient than one
with conventional cores and aggressive DVFS: for approxi-
mately the same power, ScalCores reduce the average execu-
tion time of programs by 31%, the energy (E) consumed by
48%, and the ED product by 60%. In addition, dynamically
switching between EEMode and HPMode based on program
phases is very effective: it reduces the average execution time
and ED product by a further 28% and 15%, respectively.

1. INTRODUCTION
Upcoming trends call for flexible processors. Users will

continue to demand higher energy efficiency from comput-
ing devices in all domains, even as workloads become more
dynamic. For example, sometimes all the cores in a large
manycore can contribute to the application, but we can avoid
dark silicon only if they all run in a most energy-efficient
manner. At other times, only a few cores are active, execut-
ing a critical or serial section, and we want them to deliver
high performance at any energy cost.

For homogeneous chips, some of this flexibility is cur-
rently attained with DVFS [3, 47]. A core operates at high
voltage (Vdd) and frequency (f) when it needs to deliver high
performance, and at low Vdd and f when it needs to run energy-

∗ This work was supported in part by NSF under grants CCF-
1012759 and CCF-1536795, and by DARPA under PERFECT Con-
tract HR0011-12-2-0019. Kim has a financial interest in Samsung
Semiconductor and AMD.

efficiently. However, the effectiveness of DVFS is limited.
Typically, its lowest Vdd is still "high" compared to the most
energy-efficient regime.

It is well-known that the most energy-efficient operating
point occurs at ultralow Vdds [22]. However, this is a chal-
lenging environment, where circuits are affected by process
variations. In particular, storage cells become failure-prone,
since the Vdd is close to their minimum voltage for correct
operation (Vmin) [8, 40]. Intel has recently prototyped the
experimental Claremont core [17, 38], which aggressively
works all the way down to 0.28V.

The goal of this paper is to design a core for Voltage Scala-
bility, meaning that it can flexibly work in high-performance
mode (HPMode) at nominal Vdd , and in a very energy-efficient
mode (EEMode) at low Vdd — a Vdd lower than can be at-
tained with DVFS but not as low as Claremont’s challenging
levels. This is tricky because there is a fundamental design
trade-off for a core: if it is designed to operate at very low
Vdd , the resulting circuit overheads will cause it to consume
higher power than needed at nominal Vdd — which in turn
may trigger performance throttling at nominal Vdd . This is
unacceptable, since we want our core to be competitive with
the state of the art at nominal Vdd .

To address this problem, we make two observations. First,
we note that the logic and the storage structures in a pipeline
scale differently with lower Vdd [6]. If both share Vdd and f
then, at low Vdd , the storage structures force the logic to work
less energy-efficiently than it could. If, instead, storage cells
are designed for low Vmin, they have to use larger or more
transistors, which consume additional power when operating
at nominal Vdd . Hence, we propose to supply two different
low Vdds to the pipeline in EEMode: logic-intensive pipeline
stages are powered at a lower Vdd (Vlogic), while storage-
intensive stages like those accessing registers and load/store
queues are powered at a higher Vdd .

Secondly, at these low Vdd levels, tiny Vdd increases en-
able big f gains. Therefore, given that storage structures con-
sume little dynamic energy, we propose to set the low Vdd of
the storage-intensive stages in EEMode (Vop) to a value that
is higher than we would need if we only took into account
Vmin. The result is storage structures that are substantially
faster than logic ones. We propose to exploit this speed dif-
ferential by either fusing storage-intensive pipeline stages or
increasing the size of storage structures in the pipeline. Both
changes increase IPC and reduce total energy. The result of
our proposals is a Voltage-Scalable core, or ScalCore.

We describe the pipeline modifications to fuse stages and

978-1-4673-9211-2/16/$31.00 c©2016 IEEE

to increase storage structure sizes. The resulting pipeline is
kept relatively simple as it has a single f, and operates very
energy-efficiently in EEMode. In HPMode, we disable the
dual Vdds, fused stages, and larger structures, recreating a
plain out-of-order core optimized for high performance.

We use simulations of 16 cores to show that a design with
ScalCores in EEMode is much more energy-efficient than
one with conventional cores and aggressive DVFS: for ap-
proximately the same power, ScalCores reduce the average
execution time of programs by 31%, the energy (E) con-
sumed by 48%, and the ED product by 60%. In addition, dy-
namically switching between EEMode and HPMode based
on program phases is very effective: it reduces the average
execution time and ED product by a further 28% and 15%,
respectively, over running in EEMode all the time.

The main contributions of this paper are: (1) the design of
a voltage-scalable core based on our two observations, (2)
pipeline changes to exploit the faster storage, and (3) evalu-
ation of ScalCore and comparison to aggressive DVFS.

2. MOTIVATION

2.1 The Need for Voltage Scalability
In this paper, we consider a high-performance, power con-

strained large manycore of the future, e.g. targeting cloud
servers and high-performance computing. In such environ-
ments, users will continue to demand increasing energy ef-
ficiency while, at the same time, requiring different execu-
tion modes. Sometimes, a program will be highly parallel.
In this case, we will attain highest performance by enlisting
all the cores in the manycore — as long as they run very
energy-efficiently to avoid dark silicon. At other times, only
a few cores will be able to run, as they execute mostly-serial
sections. In this case, they will run with the highest perfor-
mance, taking all the power budget of the chip.

Currently, there are two main approaches to address this
conundrum: heterogeneity and DVFS. With heterogeneity,
the chip contains some cores designed for energy efficiency
and some for high performance. In the example above, the
former would be used in the parallel section, while the latter
in the mostly-serial one. The unused cores are power gated.
An example of this approach is ARM’s big.LITTLE [12].

While this approach is useful, it is suboptimal. First, the
partition between the two types of cores in the chip is fixed,
and may not be the best one for a given application. Second,
there is always a fraction of the chip area that is unused — in
a big-little pair, either the area of the big core or that of the
little one (which can be≈30% of the big core’s area [44]). Fi-
nally, changing regimes involves migrating state, which has
a performance overhead — e.g., ≈20µs [7].

DVFS [3, 47] uses cores of a single type and changes
their Vdd and f values (and active core count) depending of
the regime. However, this approach is also suboptimal. First,
logic and storage structures scale differently with Vdd [6].
Hence, either at the high-Vdd or low-Vdd end, either the logic
or the storage structures function suboptimaly. Note that this
is not fully solved by providing one Vdd domain for the core
and one for the caches: the core pipeline still has both logic
and storage structures. The second reason for suboptimality
is that the lowest Vdd with DVFS is still "high" compared to

the most energy-efficient regime.
Such regime is at significantly-lower Vdds [5, 8, 27]. In

this regime, Intel has prototyped the Claremont processor,
which supports Vdd scaling all the way to 0.28V [17, 38].
Core and caches are in two different Vdd domains. However,
a core designed to operate at such ultralow Vdd needs to em-
ploy various circuit-level techniques that increase the area
and, when the core operates at nominal Vdd , induce higher
energy consumption.

This paper goes deeper into the general DVFS approach.
Our goal is to design a core that scales Vdd to values lower
than conventional DVFS — but not as low as Claremont,
to minimize design complexity, area cost, and power over-
head at nominal Vdd . Such power overhead is unacceptable
because it may trigger performance throttling, and makes the
core non-competitive in HPMode. Note that our goal is not to
compare the heterogeneity and DVFS approaches. Compar-
ing our design to a heterogeneous one is outside our scope.

2.2 Logic and Storage Structures in the Pipeline
A pipeline contains multiple storage structures, such as

the register file, load/store queue, or ROB. In general, these
structures are built with static cells, which become failure-
prone as the Vdd goes below a value called Vmin [8, 40].
There is a fundamental tradeoff between Vmin and cell size:
if we want a lower Vmin, we need a cell with more transis-
tors, with larger transistors, or FinFETs with more fins [23].
Hence, memory cells designed for lower Vmin consume higher
power and energy when operating at nominal Vdd .

This problem worsens for the storage structures used in
the pipeline because they are heavily multi-ported. In this
case, more transistors are connected to the cross-coupled in-
verters that form the core of the storage cell. The resulting
higher loading effect on the cross-coupled inverters makes
the cell more sensitive to process variations [13, 22, 49].
Consequently, we need to increase the cell size, which in-
creases its consumption at nominal Vdd .

Since our goal is to keep the processor competitive at high
Vdd operation, this is an unacceptable tradeoff. For example,
Zhao et al. [49] show that going from a 1-fin 8T cell to a
2-fin 8T cell increases the leakage current by ≈20%. More-
over, our Spice simulations show that increasing the number
of fins from 1 to 2 causes the 8T cell to consume 21% more
power at nominal Vdd . This is shown in Figure 1, which plots
the energy of 1-fin 8T and 2-fin 8T cells for different Vdds
normalized to 1-fin 8T at the nominal Vdd of 0.9V. The fig-
ure corresponds to 22nm and an activity factor of 1. Over-
all, since we want the storage cells in the pipeline storage
structures to be competitive at high Vdd , we propose to use
finFET-based cells with a single fin.

As we lower the Vdd , both logic and storage structures
in the pipeline become slower. However, logic and storage
structures scale differently [6]. This is shown in Figure 2,
which we generate with Spice simulations of 22nm technol-
ogy. The figure shows the increase in delay for a chain of
FO4 inverters (LogicDelay) and for an 8T register-file bank
(SRAMDelay) as Vdd decreases. The delay is the same and
normalized to 1 at nominal Vdd . This plot includes the effect
of random dopant fluctuation based on ITRS [14]. We see
that storage structures become relatively slower. This is in

2

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55

N
or

m
al

iz
ed

 E
ne

rg
y

Vdd

8T-1FIN 8T-2FIN

Figure 1: Effect of the number of fins in the FinFETs of the
8T cell on energy consumption for different Vdds.

line with the observation made by [43].
In related work, Dreslinski et al. [9] characterized the en-

ergy consumption of cores and caches at near-threshold volt-
age, and found that the energy-optimal Vdd for caches makes
them 2-4x faster than the cores. We go beyond and exploit
the different behavior of logic and storage structures within
the pipeline.

0

1

2

3

4

5

6

7

8

9

10

11

12

0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45

N
or

m
al

iz
ed

 D
el

ay

Vdd

SRAMDelay LogicDelay

Figure 2: Increase in delay for logic and storage structures in
the pipeline as we decrease Vdd .

3. ScalCore CONCEPT

3.1 Main Ideas
Our goal is to design a core for Voltage Scalability, which

means that it can flexibly work in a high-performance mode
(HPMode) at nominal Vdd , and in a very energy-efficient
mode (EEMode) at low Vdd . The low Vdd is the lowest that
can be sustained by the logic structures in the pipeline (but
not the storage ones) before their performance becomes sub-
stantially degraded — and without requiring changes to ba-
sic circuit structures, or changes to transistor size or doping
that can hurt the operation at nominal Vdd . To attain our goal,
we rely on three ideas: (i) provide separate low Vdds in the
pipeline for logic and storage structures, (ii) further increase
the low Vdd for the storage structures, and (iii) leverage the
higher speed of the storage structures in the pipeline.

3.1.1 Two Low Vdds in Pipeline: Logic & Storage
Designing storage cells to work at very low Vdd results

in power inefficiency at nominal Vdd . Hence, we propose to
modify the core to feed two Vdds to the pipeline in EEMode:
(1) logic structures are powered at a very low Vdd that still
enables them to perform acceptably (Vlogic); and (2) storage
structures such as the register file and load/store queue are
connected to a Vdd that is higher than Vlogic (and at least as
high as their Vmin). With this design, the core operates with

high energy-efficiency. Moreover, when we do not want to
operate in EEMode, we apply a higher, equal Vdd level to
both logic and storage structures.

To determine the Vdds, we proceed as follows. We take a
four-issue out-of-order core (more details in Section 7) and
use McPAT’s [25] high-performance process at 22nm to de-
termine its fnom at the nominal Vdd of 0.9V. Such fnom is
≈3.5GHz. Starting from this point, we use our Spice sim-
ulations of Figure 2 to generate the Vdd-f scalability curves
for logic and storage structures. We then adjust these curves
with the effects of systematic process variations, using VAR-
IUS [20] with the systematic variation values of EnergyS-
mart [21]. The resulting Vdd-f curves are shown in Figure 3.

100

1000

10000

0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45
F

re
qu

en
cy

 (
M

H
z)

Vdd (V)

SRAM-Freq Logic-Freq

V
op

V
m

in

V
lo

gi
c

fop ~ 1200

fmin ~ 900

flogic ~ 600

V
no

m

fnom ~ 3500

Figure 3: Vdd-f curves for logic and storage structures.

To pick Vlogic, we observe that the logic delay curve in
Figure 2 has a knee at Vdd ≈0.5V. Going below such value
results in increasingly slower structures, which would cause
the program to run substantially slower and consume sub-
stantially more leakage energy. This observation is consis-
tent with the data in Kaul et al. [22]. Hence, in Figure 3, we
set Vlogic=0.5V, which corresponds to flogic ≈600MHz.

To find the Vmin of the storage structures, we argue that up-
coming storage cells are likely to be aggressively designed
for energy efficiency, and hence for low Vmin. For exam-
ple, Intel has attained SRAMs with Vmin=0.6V in 22nm [18]
and 14nm [19]. Hence, we set Vmin=0.60V, which in Fig-
ure 3 corresponds to fmin ≈900MHz. This operating point
{Vdd=0.60V, f=900MHz} is the lowest point that we assume
can be reached with conventional DVFS with a single Vdd
domain for the whole pipeline. While the Vdd looks aggres-
sively low by today’s standards, we think it is plausible, given
the need for energy efficiency in upcoming designs.

3.1.2 Further Increase Vdd for the Storage Structures
We can improve the energy efficiency of the EEMode if

we consider the following traits of the EEMode regime:
• While the storage structures need a higher Vdd than the
logic ones for safe operation (Vmin >Vlogic), the storage struc-
tures at Vmin can in fact operate faster than the logic structures
at Vlogic [6, 36]. This is seen in Figure 3.
• At this range of Vdds, a small increase in Vdd provides a
significant boost to the operating f.
• For storage structures at these low Vdds, the dominant com-
ponent of power consumption is leakage.

These observations suggest that, in EEMode, a small fur-
ther increase in the Vdd of the storage structures can make

3

Next
PC

Decode

Branch
Pred.

Allocate

R
egister F

ile
R

egister F
ile

EX

EX

EX

LSU

ROB/
Completion

Table

Main storage structures

Fetch
 Decode
 Rename
 Dispatch
 Wakeup
 Select
 Data
Read

Source
Drive
 Ex
 Ex
 Write

back

L1-I

L1-D

Figure 4: Pipeline of an out-of-order processor with the main storage structures.

them significantly faster, while consuming only a little more
power. A higher Vdd increases the dynamic power compar-
atively more than the static power. However, since the dy-
namic power of storage structures in EEMode is small, the
overall power will increase little.

Hence, we propose ScalCore as a core where, in EEMode,
the Vdd of the storage structures is set to a voltage Vop that
is higher than Vmin. Specifically, we set Vop > Vmin such that
storage structures can operate at 2x the f of the logic struc-
tures (which use Vlogic). This is shown in Figure 3, where
Vop ≈0.65V and fop ≈1200MHz.

By setting the storage structures to Vop rather than Vmin,
we will improve the IPC of the cores. The resulting lower
execution time of the applications in turn reduces the leak-
age energy — not only of the cores, but also of the caches.
This reduction more than compensates the small increase in
dynamic energy in the storage structures induced by going
from Vmin to Vop.

3.1.3 Leverage the Higher Speed of Storage
Finally, we exploit that storage structures are faster than

logic ones in ScalCore’s EEMode in one of two ways:
• Without changing the core’s f, we fuse two consecutive
pipeline stages that are dominated by storage structures into
one. This reduces pipeline depth and improves the IPC.
• Without changing the core’s f, we enable more entries in
critical storage structures in the pipeline, consuming some
of the available time slack. This increases the exploitable ILP
and memory-level parallelism (MLP), and improves the IPC.

In either case, in EEMode, all the stages of the ScalCore
pipeline cycle at the same f. This keeps the pipeline relatively
simple. Outside EEMode, we disable the fusing of pipeline
stages and the larger storage structures, and use a single Vdd .
The core becomes a plain out-of-order core optimized for
high performance. It can use conventional DVFS (with a sin-
gle Vdd in the pipeline) to vary its operating point.

Overall, ScalCore can flexibly deliver high performance in
HPMode and high energy efficiency in EEMode. However,
we need to carefully select which pipeline stages to fuse and
which structures to resize.

3.2 Analysis of Pipeline Stages
We analyze the pipeline stages that have storage structures

to identify opportunities to improve EEMode operation. At

low Vdd , Dreslinski et al. [9] showed that operating the L1
caches at a higher Vdd than the core delivers energy effi-
ciency. This same approach was used in Claremont [17, 38].
Hence, all of our low-Vdd designs (including the baseline)
operate the L1 caches at Vop by default. With ScalCore, we
go beyond and use two Vdd domains in the pipeline.

Figure 4 shows the pipeline of an out-of-order processor
and identifies the main storage structures. They are the reg-
ister file, allocation structures, load/store unit (LSU), ROB,
and branch predictor. We now analyze each of these struc-
tures for possible enhancements when we operate them at
Vop. The enhancements can consist of either fusing stages or
increasing the size of structures. The implementation is dis-
cussed in Section 4.

3.2.1 Register File
The critical path of a register file access in a pipelined

design consists of two steps. In the first step, the operands
are read from the data array into a buffer; in the second step,
they are delivered to the execution units. This process takes
at least two cycles in a typical high-frequency design [11].
By operating at Vop in EEMode, we can enhance the register
file in one of two ways: either reducing its access latency in
cycles or increasing its size.

In the first case, we operate the two steps of a register file
access at twice the speed, and fuse them into a single cy-
cle. In the second case, we increase the size of the physical
register file without changing the two cycles of access time.

3.2.2 Allocation Structures
The allocation step primarily involves register renaming

and instruction dispatch. A detailed analysis of the critical
path in renaming is performed by Palacharla et al. [33]. The
authors found that the critical path in rename consists of
reading the current mappings of the source registers in the
Register Alias Table (RAT), followed by updating the map-
pings of the destination registers in the RAT. The dependence
check among the registers currently being renamed is not in
the critical path, and is implemented using low-power tran-
sistors, which reduces the dynamic power. Also, the design
of the RAT is similar to the register file. Hence, we operate
the rename unit at Vop in EEMode.

The rename delay in an out-of-order core is proportional
to the core’s width. In a very wide core, the rename opera-

4

tion may take more than one cycle. However, for a core width
of four like ours, renaming in a baseline design can be com-
pleted in a single cycle. Hence, in ScalCore, we can combine
the rename and dispatch stages and fuse them into one cycle
operating at Vop. Since the dynamic power consumption of
the dispatch unit is low [39], the increase in Vdd to Vop has
only a small effect. We do not change the size of the rename
unit because we find that it does not have a critical resource
whose size can be increased to improve performance.

3.2.3 Load/Store Unit (LSU)
At a high level, the LSU consists of two stages, each tak-

ing one cycle. The first stage performs address generation,
and the second one memory disambiguation. Also, in paral-
lel to the disambiguation, store instructions write values to
the store buffer. The load/store queue in the LSU contains
in-flight memory instructions and maintains the ordering be-
tween instructions.

Since the LSU takes two cycles and also has a resource
(load/store queue) whose size can be increased, as we op-
erate the LSU at Vop, we can do one of two things: either
we fuse the two stages to reduce the latency to one cycle,
or we increase the load/store queue size. When we fuse the
two stages, stores write to the store buffer in half of a cycle.
When we increase the load/store queue size, we also increase
the store buffer size. Note that increasing the size of the load-
/store queue requires extra care, since it uses CAM structures
to perform memory disambiguation (Section 4.1.2).

3.2.4 ROB
We consider a merged register file-based renaming scheme

as described in [11]. The ROB only acts as a completion ta-
ble, keeping track of the in-flight instructions. The entries in
the ROB are reserved on instruction dispatch and are freed
on commit. The commit process in HPMode takes only one
cycle. Hence, there is no obvious opportunity to reduce the
latency in EEMode. However, we modify the size of the ROB
in EEmode to enable more in-flight instructions. This allows
us to exploit more ILP or MLP, based on the application.

The dynamic power of the ROB itself is low [39]. Hence
the increase of the Vdd to Vop causes a modest increase in
dynamic energy.

3.2.5 Branch Predictor
Branch prediction in modern processors consists of a fast

BTB to provide prediction in a single cycle, which is backed-
up with a more complex and accurate branch predictor with a
longer latency. In our baseline design, we have a tournament
predictor with a total size of 48K entries and a BTB of 2K
entries. Although the BTB is structurally similar to a register
file or cache, there is no obvious opportunity to further re-
duce its latency. While it is possible to take advantage of the
faster operation at Vop by using a fancier branch prediction,
it is out of this paper’s scope. Also, by simply increasing
structure sizes, the expected improvement in IPC is small,
considering the high baseline size [2, 10]. Hence, we do not
optimize the branch predictor.

3.3 Summary
Based on the above analysis, Table 1 lists the pipeline

structures that can be enhanced by ScalCore in EEMode, and

the enhancement options. Note that a given structure can-
not both run faster and be bigger at the same time. Outside
EEMode, all structures are operated at the same Vdd , and at
their baseline speed and size.

Structure Faster Bigger
Register File X X

Allocation Struc. X 7
Load Store Unit X X

ROB 7 X
Branch Pred. 7 7

Table 1: Enhancements considered for different structures.

4. ScalCore DESIGN
To support the enhancements in Table 1, ScalCore requires

some changes over conventional processors. We classify them
into microarchitectural changes in the datapath and control-
path, and circuit changes. We consider each in turn.

4.1 Datapath Microarchitectural Changes

4.1.1 Reduction in Latency
Fusing two consecutive pipeline stages in EEMode is ac-

complished by transforming the latch that sits in between
them into a transparent (or flow-through) latch [16, 42]. This
is done by ORing the clock to the latch with an Enable Flow-
through signal. When the signal is set to logic one, the latch
is transparent.

The logic design is shown in Figure 5a. In HPMode (upper
chart), Stages 2a and 2b take one cycle each, and operate
at nominal voltage (Vnom) like the other stages. The Enable
Flow-through bit in the OR gate is set to logic zero. This
causes the latch to be controlled by the clock.

In EEMode (lower chart), Stages 2a and 2b are fused to-
gether to execute in a single cycle. The Enable Flow-through
bit is set to logic one, which makes the latch transparent. In
addition, Stages 2a and 2b operate at Vop, which is higher
than the Vlogic used in Stages 1 and 3.

This OR gate is added to the latches connecting the pairs
of stages to be fused: (i) the two stages of a register file ac-
cess, (ii) rename and dispatch, and (iii) the two stages in the
LSU. Designs based on flip-flops can be modified in a sim-
ilar manner, by providing a bypass path that is enabled in
EEMode.

4.1.2 Bigger Structures
The size of a storage structure in ScalCore is increased by

enabling an additional array with transmission gates. This
general approach was proposed by Buyuktosunoglu et al. [4]
for issue queues. By toggling the input to the transmission
gates, we can easily enable or disable the new array. Fig-
ure 5b shows an example of a structure with an original array
(Array 0), and an additional one (Array 1) connected with
transmission gates. In HPMode (left chart), the transmission
gates disable Array 1, while Array 0 operates at Vnom. In
EEMode (right chart), the transmission gates enable Array
1. Both arrays are active and run at Vop.

With this design, the register file, load/store queue, store
buffer, and ROB can use more entries in EEMode than in HP-
Mode. CACTI analysis [30] shows that, at the higher Vop, we
could increase the structure sizes substantially and still meet

5

L
at

ch

Stage 2a

L
at

ch

Stage 2b

L
at

ch

Enable
Flow-through

CLK

Stage 3

L
at

ch

Stage 1

L
at

ch

L
at

ch

2a

L
at

ch

L
at

ch

CLK

Stage 3

L
at

ch

Stage 1

L
at

ch

2b

Vnom Vnom Vnom Vnom

Vlogic Vlogic Vop Vop

0

Enable
Flow-through

1

HPMode

EEMode

(a) Fusing pipeline stages using a flow-through latch.

Array 0
Vnom

Decoder

Array 1
Disabled

Sense Amp
Sense Amp

Data Select

HPMode
0 1

0 1

Array 0
Vop

Decoder

Array 1
Vop

Sense Amp
Sense Amp

Data Select

EEMode
1 0

1 0

(b) Increasing the size with transmission gates.

Figure 5: Datapath changes in ScalCore. The shaded components are disabled.

the cycle time. However, very large structures incur area and
leakage overheads, and are hard to use cost-effectively. As
we will see, a possible design is to increase the size of these
structures by 50% in EEMode.

We make special arrangements for the load/store queue,
since it uses CAM structures to perform memory disambigua-
tion. Specifically, to reduce complexity, ScalCore uses a seg-
mented load/store queue [34] with two segments. In HP-
Mode, only one segment is active and the other is power
gated. Hence, the delay and power in HPMode are not im-
pacted. In EEMode, both segments are active and are sequen-
tially searched on a request. Since the segments operate at
Vop, both segments are searched in a single cycle.

In EEMode, the dynamic power of the load/store queue
increases only for the searches that overflow into the second
segment. Also, techniques like low-swing, selective precharge
of search line/matchline reduce the dynamic power of CAM
by more than 50%, with no delay impact over a conventional
design [32]. By using such techniques, the dynamic power
component becomes small even in the baseline. Hence, the
increase in load/store queue size causes only a small increase
in the dynamic energy.

4.2 Controlpath Microarchitectural Changes

4.2.1 Reduction in Latency
Reducing the latency of some operations has an impact on

the scheduling of various tasks in the pipeline. So, we need to
modify the control logic responsible for those tasks. Specif-
ically, in EEMode, by reducing the register file read latency
(which includes the source drive of operands) from two to
one cycle, the execution units receive operands in one cycle,
and hence can begin execution one cycle earlier. In addition,
as the execution finishes a cycle earlier, the dependent in-
structions can be woken up and scheduled earlier. Hence, the
execution schedule time and the generation of the wakeup
signal need to be updated based on the mode of operation.
Similarly, to enable the speculative issue of load-dependent
instructions, the issue logic should be updated with the new
latency of the LSU.

Reducing the latency of the allocation operation does not
have an obvious direct impact on the scheduling of tasks.
The process of renaming and dispatching instructions in or-
der can proceed in the same manner in both modes.

Therefore, the only controlpath modifications required are
to ensure that the part of the issue-queue state machine re-
sponsible for generating ready signals accurately reflects the
mode of operation. The issue queue already contains func-
tionality to generate the wakeup signal at different times based
on the latency of the functional unit (e.g., ADD vs. DIV) [11].
Hence, by modifying the counters used for this process, we
ensure correct scheduling in both HPMode and EEMode.

4.2.2 Bigger Structures
The availability of a bigger resource should be conveyed

to its corresponding resource manager to enable its usage.
In EEMode, the sizes of the register file, load/store queue,
store buffer, and ROB are higher. To benefit from the bigger
physical register file, the list of free registers in the rename
unit must be updated. The list of free registers is typically
maintained as a circular buffer with head and tail pointers,
which can be resized based on the mode of operation.

The dispatch unit is responsible for checking various exe-
cution resources and stall in case of unavailability. It main-
tains counters for the availability of each resource. To indi-
cate the sizes of the current ROB, load/store queue, and store
buffer, we just need to update these counters based on the
mode of operation. Overall, therefore, the changes required
in the controlpath for bigger structures involve reconfiguring
the counters in the rename and dispatch stages.

Table 2 summarizes the microarchitectural changes.

Component Reduced Latency Bigger Size
Datapath Gated clocks for trans-

parent latches
Transmission gates to
resize structures

Controlpath Programmable coun-
ters for latency

Programmable coun-
ters for size

Table 2: Microarchitectural changes in ScalCore.

4.3 Circuit Changes
The circuit changes involve supporting dual voltage rails

and level converters.

4.3.1 Dual Voltage Rails
In ScalCore, each pipeline stage is connected to one of

two Vdd rails, as shown in Figure 6. All the storage-intensive
stages are connected to one rail. They are the two stages
of register file access, the rename stage, the dispatch stage,
the two stages of LSU access, and the commit stage. The

6

other stages are connected to the other rail. Each rail is set
to the required Vdd level, based on the mode of operation.
In EEMode, the storage-intensive stages receive Vop, while
the rest receive Vlogic; outside EEMode, both rails supply the
same voltage.

Storage
Stage 2a

Storage
Stage 2b

Logic
Stage 1

HPMode: V1 = V2 = Vnom EEMode: V1 = Vlogic; V2 = Vop

V1

V2

L
at

ch
 w

/
L

ev
el

 C
on

v.

L
at

ch

L
at

ch

Logic
Stage 3

Figure 6: ScalCore pipeline with dual voltage rails.

These storage-intensive stages share the Vdd domain with
the L1 caches which, as indicated in Section 3.2, also operate
at Vop in EEMode. As a result, there is no need to add any
additional voltage regulator in ScalCore over the baseline de-
sign. Note that the L1 caches are laid out together with the
pipeline in current designs.

4.3.2 Level Converters
All the stages in ScalCore always operate at a common f.

This simplifies the design by avoiding multiple clock trees
and synchronization overhead across stages. However, con-
secutive pipeline stages may operate at different Vdd levels in
EEMode. Hence, a level converter is required on the bound-
ary between a stage at Vlogic and one at Vop, to provide full
swing input to the higher Vop domain. Note that the differ-
ence in Vdd levels is only 150mV.

Level converters can be designed as part of the latches or
flip-flops that separate the stages (Figure 6). The design of
a level converter is shown in Figure 7. It is based on [15],
where pulsed half-latch level converting flip-flops are shown
to be efficient, both in area and in energy-delay, compared to
asynchronous level conversion in a dual-Vdd system.

Vlogic

Vop

d q (inv)

ck

ck
clk

Figure 7: Level converter for up-conversion.

5. IMPLEMENTATION CONSIDERATIONS
This section considers three implementation issues: the

transition between modes, a summary of ScalCore overheads,
and a comparison to Intel Claremont.

5.1 Transition Between Modes
In highly-parallel sections, all the cores in a large many-

core are powered-on and run in EEMode. In sections with
little parallelism, only a few cores are powered-on and run
in HPMode, using all the power budget of the chip. While in
HPMode, ScalCore can also use DVFS.

ScalCore provides a simple way to reconfigure the pipeline
between the two modes. First, pipeline reconfiguration can
only occur when the pipeline is empty. Consequently, recon-
figuration requires a pipeline flush. Such a flush can take

a variable number of cycles — e.g., depending on whether
there are pending writes in the store buffer (pending reads
are squashed). However, the average flush is not likely to take
more than several tens of cycles. Second, we need to change
the f and Vdd of the core. Specifically, from a common Vdd in
all stages in HPMode, we transition to Vop for the storage-
intensive stages and Vlogic for the others in EEMode (or vice-
versa). This transition uses conventional DVFS mechanisms.
Its overhead is likely to be modest in the future, as increasing
DVFS speed is an active area of research and development.
In our evaluation, we set this overhead of changing f and
Vdd between modes to 1 µs. Note that pipeline stages do not
switch Vdd rails; ScalCore merely changes the rails’ voltage.

Overall, the overhead of transitioning from EEMode to
HPMode and vice-versa is small. The reconfiguration can be
triggered either in hardware by the power management unit,
or in software by the operating system or program.

5.2 Summary of ScalCore Overheads
Table 3 summarizes the ScalCore overheads and their im-

pact on HPMode. The first issue is dual Vdd rails. Their main
overheads are the additional area they take and the need to
customize their layout/routing, since automatic tools may not
be able to handle them. One implementation of dual rails [31]
estimates the area cost to be ≈5% of the core.

Issue Type of Overhead Impact on
HPMode

Dual Vdd
rails

1) Custom layout and routing. 2) Area in-
crease

≈5% area
[31]

Level con-
verters

1) Carefully manage clock skew/timing.
2) Add gates in critical path

≈5% delay
[15]

Fusing
Pipeline
Stages

1) OR gate added to the clock signal for
each latch connecting fused stages. 2)
Control logic for counters for latency

Tiny area
and power

Increasing
Array
Sizes

1) Additional array. 2) Transmission
gates to enable/disable additional array.
3) Segmented ld/st queue. 4) Control
logic for counters for size

Area of
power-gated
array. Tiny
power and
delay [4]

Table 3: Summary of ScalCore overheads.

The second issue is level converters. They require care-
fully managing the clock skew and timing across domains.
Moreover, they add a few gates to the pipeline stage. Based
on Ishihara et al.’s [15] work, we estimate a delay impact in
HPMode of≈5%. The additional area and power of the level
converters is negligible [15].

The third issue is fusing pipeline stages. It requires an
OR gate added to the clock signal for each latch connect-
ing fused stages, and control logic for counters for latency
(Section 4.2.1). In HPMode, it adds a tiny area and power
overhead but no delay in the critical path.

A fourth issue is increasing array sizes. It requires an ad-
ditional array, transmission gates to enable/disable the addi-
tional array, a segmented load/store queue, and control logic
for counters for size (Section 4.2.2). In HPMode, the ad-
ditional array is power gated, but takes up area. The addi-
tional logic introduces only tiny power and delay overheads.
Buyuktosunoglu et al. [4] show that the transmission gate
delays are negligible. Their design is more involved than
ours in that they get multiple, dynamically variable laten-
cies, which require careful synchronization with the rest of

7

the pipeline. In our case, we only have two configurations,
and the large one has ample timing slack. Similarly, Park et
al.’s [34] segmented load/store queue is more involved be-
cause disambiguation can take a variable number of cycles,
while ours always takes one cycle.

Finally, ScalCore introduces design complexity and veri-
fication costs, which are hard to quantify.

5.3 Comparison to Intel Claremont
Table 4 compares Intel’s Claremont prototype [17, 38] to

ScalCore. A main difference is that Claremont targets a very
wide Vdd operating range (1.2V to 280mV) while ScalCore
targets a more modest range (0.9V to 0.5V). As a result,
Claremont uses more aggressive techniques, including man-
ually prioritizing the placement of logic paths that have a
high percentage of interconnect, or using two level-converters
in series to bring the voltage to high Vdd .

Trait Claremont ScalCore
Vdd range Very wide: 1.2V to 280mV Wide: 0.9V to 0.5V
Focus Circuit techniques: Architectural techniques:

1) Variation aware pruning
& beefing-up of cells.

1) Separate Vdd for mem-
ory intensive pipe stages.

2) Circuits optimized for
reliability at ultralow Vdd

2) Fuse pipeline stages. 3)
Increase array sizes

Vdd do-
mains

1 for the pipeline + 1 for
the L1

1 for the memory intensive
pipe stages and L1 + 1 for
the other pipe stages

Table 4: Comparing Intel Claremont to ScalCore.

Another difference is that Claremont’s focus in on cir-
cuit techniques, while ScalCore’s is on architectural tech-
niques. Claremont includes variation-aware selective prun-
ing and beefing-up of the standard cell library, and circuits
optimized for reliability at ultralow Vdd — e.g., avoiding
wide transmission-gate multiplexers and circuits with high
transistor stacks. The result of needing to reach an ultralow
Vdd is device area bloat.

ScalCore focuses on architectural techniques such as a
separate Vdd for memory-intensive pipeline stages, fusing
pipeline stages, and increasing array sizes.

Although the number of Vdd domains in both designs is
the same, they are organized differently. Claremont has one
domain for the pipeline and one for the L1; ScalCore has
one for the memory-intensive pipeline stages plus the L1,
and one for the rest of the pipeline stages.

6. IMPLICATIONS ON APPLICATIONS

6.1 Pipeline Stage Fusion
In EEMode, ScalCore can perform register access, rename-

dispatch, and LSU handling in one cycle each, rather than
in two cycles each. In total, the pipeline depth reduces by
three cycles for load/store instructions and by two cycles for
others. This reduction has a few implications, as noted by
Tullsen et al. [46]. First, it reduces the branch misprediction
penalty by 2 cycles. Second, it results in fewer instructions
from the mispredicted path in the pipeline, which saves en-
ergy and resources. Third, registers are now held for a shorter
duration, reducing the contention for physical registers dur-
ing renaming. Finally, reducing the LSU latency also helps

the optimistic issue of load-dependent instructions that as-
sume a cache hit.

Overall, these effects result in an increase in the average
IPC for a broad range of application types — especially for
integer applications, which have more branches.

6.2 Bigger Structures
Increasing the sizes of the register file, load/store queue

(LSQ), store buffer, and ROB enables an out-of-order core
to extract more ILP/MLP and, therefore, boost performance.
Traditionally, increasing LSQ size to exploit higher MLP re-
sults in additional pipeline stages, hurting the IPC. In Scal-
Core, by operating the LSQ at Vop, we are able to increase
the size and still keep the number of stages constant.

These changes improve the IPC for most applications, es-
pecially those that stress the current structures — e.g., mem-
ory intensive codes constrained by LSQ size, or FP applica-
tions with sizable ILP.

7. EVALUATION SETUP
To evaluate ScalCore, we use the SESC architectural sim-

ulator [37], modeling up to 16 4-issue out-of-order cores.
We use McPAT for detailed energy calculation [25]. For a
more accurate evaluation of dynamic and leakage energies,
we model the L1 and L2 caches with CACTI [30]. Table 5
shows the parameters of the simulated architecture.

Parameter Value
Architecture Up to 16 4-issue out-of-order cores at 22nm
Register file; ROB 128 regs; 128 entries
Issue queue 48 entries
Ld queue; St queue 48 entries; 32 entries
Branch prediction Tournament predictor: bimodal (16K entry), gshare (16K

entry) and selector (16K); 32-entry RAS; 4-way 2K-entry
BTB

Functional units:
2 integer ALU 4-cycle Mult/Div, 1-cycle for rest
2 LSU 2 cycles
2 FPU 1-cycle Add, 4-cycle Mult, 12-cycle Div
Private I-Cache 64KB; 2way; 64B line; Round-trip (RT): 2cycles (HP-

Mode) or 1cycle (EEMode or any low-Vdd design)
Private D-Cache 64KB; 4way; writeback (WB); 64B line; RT: 2cycles (HP-

Mode) or 1cycle (EEMode or any low-Vdd design)
Shared L2 Per core: 1MB; 8way; WB; 64B line; RT to local bank:

8cycles (HPMode) or 6cycles (EEmode or low-Vdd design)
DRAM latency RT: 50ns
Network 2D mesh with MESI directory-based protocol
EEMode-HPMode Pipeline flush + 1µs (for Vdd and f change)
change overhead

Table 5: Parameters of the simulated architecture.

Table 6 shows the f and Vdd for HPMode and EEMode.
They were justified in Section 3.1. We have penalized the f
of our HPMode by 5%, due to the delay overhead of Scal-
Core in Table 3. Note that the cache latencies in cycles in
Table 5 are higher in HPMode than in EEMode (and all of
the low-Vdd designs that we will analyze). This is because
the core’s f is different. Finally, in EEMode and all of the
low-Vdd designs, caches operate at the higher Vop=0.65V to
improve efficiency, as suggested in [9].

HPMode Vdd=Vnom=0.9V; f=3.3GHz /* 5% penalty as per Table 3 */
EEMode Vlogic=0.50V for logic and Vop=0.65V for storage; f=0.6GHz

Table 6: HPMode and EEMode design points.

8

7.1 Design Configurations
We evaluate several configurations operating at low Vdd , as

shown in Table 7. First, DVFS+ is the most energy-efficient
voltage-frequency setting that we assume an aggressive DVFS
can reach. It operates the whole pipeline at Vdd=Vmin=0.6V,
and f=0.9GHz. In addition, the caches operate at the more
energy efficient Vop=0.65V (like all the other designs in the
table) — hence, the suffix “+”. This is the Vdd domain ar-
rangement of Dreslinski et al. [9] and Claremont [17, 38],
although the actual Vdd levels are different.

Config. Parameters
DVFS+ Whole pipeline at Vdd=Vmin=0.60V; f=0.9GHz. /* Uses the

Vdd domain arrangement of Dreslinski et al. [9] and Clare-
mont [17, 38] */

Pipe2Vdd Pipe logic at Vlogic=0.50V and pipe storage at
Vdd=Vmin=0.60V; f=0.6GHz. /* Storage not fast enough to
exploit the speed difference */

SC: Pipe logic at Vlogic=0.50V and pipe storage at Vdd=
Vop=0.65V; f=0.6GHz. /*ScalCore EEMode variations*/

SCsp1 Reg = 1 cycle latency
SCsp2 Reg, alloc, LSU = 1 cycle latency
SCsz Reg, LSQ, store buff, ROB = 1.5x size
SCmx Reg, alloc = 1 cycle lat; LSQ, store buff, ROB = 1.5x size

Table 7: Configurations explored in low Vdd .

Pipe2Vdd adds a dual Vdd domain in the pipeline: it sets
Vlogic=0.50V for the logic stages, and Vdd=Vmin=0.60V for
the storage stages. However, storage is not fast enough to
exploit the speed difference with logic. f is 0.6GHz.

Next, SC creates ScalCore by keeping Vlogic=0.50V for
the logic stages but increasing Vdd=Vop =0.65V for the stor-
age stages. f remains at 0.6GHz. We have four variations
with different hardware support. First, SCsp1 and SCsp2 (for
speed) reduce latencies by fusing pipeline stages. Specif-
ically, SCsp1 fuses the two stages in the register file ac-
cess into one. SCsp2 augments SCsp1 by also fusing the two
stages in the allocation and the two in the LSU into one each.

SCsz (for size) keeps the pipeline unchanged but increases
the sizes of the register file, LSQ, store buffer, and ROB.
We have evaluated different amounts of size increases. Given
our limited space, we present data for only one size, which
delivers one of the best tradeoffs between energy and perfor-
mance. The design is for 1.5x structure sizes. It can be shown
that other sizes are less cost-effective or only marginally more
cost-effective.

SCmx (for mixed) combines fusing stages and increasing
structure sizes. Specifically, it fuses the two stages in the reg-
ister file access into one, and the two in the allocation into
one. It sets the sizes of the LSQ, store buffer, and ROB to
1.5x their original sizes. Note we can only increase either
the speed or the size of a given unit at a time.

All of these low-Vdd designs have the same low cache la-
tencies in cycles as ScalCore’s EEMode. The values were
shown in Table 5.

At Vnom, we evaluate HPMode (our ScalCore) and HPRef
(state-of-the art, like HPMode but without the 5% f penalty).

7.2 Applications & Metrics
We evaluate the architectures with a variety of parallel ap-

plications. From SPLASH-2, we use Barnes (16K particles),
Cholesky(tk29.O), FFT(220), FMM(16K), LU(512x512), Ra-
diosity(batch), and Radix(2M keys). From PARSEC, we use

Blackscholes (sim medium), Fluidanimate (sim small), and
Streamcluster (sim small). From NAS, we use BT, LU, and
SP (all W size). We run each application to completion.

Our metrics are execution time, energy consumption (E),
and energy-delay product (ED). In our evaluation, we start by
comparing the different ScalCore EEMode configurations to
HPRef, DVFS+, and Pipe2Vdd. We do it in an environment
with a fixed power, and one with no power constraints. In
both cases, we run the SPLASH-2 and PARSEC codes and
do not change configurations dynamically. Then, we con-
sider the environment with the fixed power again, and al-
low changing the configurations dynamically. In this case,
we run the NAS codes. In each NAS code, we prevent the
parallelization of some parts so that the serial section takes
≈30% of the total execution time.

8. EVALUATION

8.1 Environment with a Fixed Power
We compare the different ScalCore EEMode configura-

tions, HPRef, DVFS+, and Pipe2Vdd for a fixed amount of
power. To do this, we note that the power consumption of
a single HPRef core and its caches is ≈12W. Then, each of
the other configurations can have as many cores as needed
to get to ≈12W. Figure 8 shows, for each configuration, the
power consumed and the number of cores that can execute.
From the figure we see that, for our applications, for the
power of one HPRef core (1-HPRef), we can run one HP-
Mode core (1-HPMode), or eight DVFS+ cores (8-DVFS+),
or 16 Pipe2Vdd cores (16-Pipe2Vdd), or 16 cores under the
various ScalCore EEMode configurations (16-SC*).

 0

 2

 4

 6

 8

 10

 12

 14

1-HPRef
1-HPMode

8-DVFS+
16-Pipe2Vdd

16-SCsp1
16-SCsp2

16-SCsz
16-SCmx

A
ve

ra
ge

 P
ow

er
 C

on
su

m
pt

io
n

Figure 8: Configurations for a fixed power.

We now take these designs and compare their execution
time, total E, and ED product running the applications. Fig-
ure 9 shows, for each design, the execution time of each ap-
plication and the average. In each application, the bars are
normalized to 16-Pipe2Vdd.

We consider first the different ScalCore designs. We see
that all of its variants reduce the execution time over 16-
Pipe2Vdd. The gains come from the increase in the Vdd of the
storage structures in the pipeline, and the resulting pipeline
reconfiguration. Most of the applications show higher gains
due to a reduction in the latency (16-SCsp1 and 16-SCsp2)
than due to an increase in the size of the structures (16-SCsz).
This is because applications typically exhibit sensitivity to
branch misprediction penalty and load-to-use delay, both of
which are reduced in the 16-SCsp* designs. However, for
these applications, the additional changes going from 16-
SCsp1 to 16-SCsp2 have minimal impact, as they are hidden
by other effects such as pipelining and inter-thread synchro-
nization. In addition, applications that exhibit higher levels

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Barnes Cholesky FFT FMM LU Radiosity Radix Blackscholes Fluidanimate Streamcluster Average

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

1-HPRef 1-HPMode 8-DVFS+ 16-Pipe2Vdd 16-SCsp1 16-SCsp2 16-SCsz 16-SCmx

2.
8

1.
9

4.
2

2.
5

1.
5

2.
8

3.
3

2.
8

2.
3

2.
1

2.
6

3.
0

2.
0

4.
4

2.
6

1.
6

2.
9

3.
4

2.
9

2.
4

2.
2

2.
7

Figure 9: Execution time of different designs with the same power, normalized to 16-Pipe2Vdd.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

H
P

R
ef

H
P

M
ode

D
V

F
S

+
P

ipe2V
dd

S
C

sp1
S

C
sp2

S
C

sz
S

C
m

x

H
P

R
ef

H
P

M
ode

D
V

F
S

+
P

ipe2V
dd

S
C

sp1
S

C
sp2

S
C

sz
S

C
m

x

H
P

R
ef

H
P

M
ode

D
V

F
S

+
P

ipe2V
dd

S
C

sp1
S

C
sp2

S
C

sz
S

C
m

x

H
P

R
ef

H
P

M
ode

D
V

F
S

+
P

ipe2V
dd

S
C

sp1
S

C
sp2

S
C

sz
S

C
m

x

H
P

R
ef

H
P

M
ode

D
V

F
S

+
P

ipe2V
dd

S
C

sp1
S

C
sp2

S
C

sz
S

C
m

x

H
P

R
ef

H
P

M
ode

D
V

F
S

+
P

ipe2V
dd

S
C

sp1
S

C
sp2

S
C

sz
S

C
m

x

H
P

R
ef

H
P

M
ode

D
V

F
S

+
P

ipe2V
dd

S
C

sp1
S

C
sp2

S
C

sz
S

C
m

x

H
P

R
ef

H
P

M
ode

D
V

F
S

+
P

ipe2V
dd

S
C

sp1
S

C
sp2

S
C

sz
S

C
m

x

H
P

R
ef

H
P

M
ode

D
V

F
S

+
P

ipe2V
dd

S
C

sp1
S

C
sp2

S
C

sz
S

C
m

x

H
P

R
ef

H
P

M
ode

D
V

F
S

+
P

ipe2V
dd

S
C

sp1
S

C
sp2

S
C

sz
S

C
m

x

H
P

R
ef

H
P

M
ode

D
V

F
S

+
P

ipe2V
dd

S
C

sp1
S

C
sp2

S
C

sz
S

C
m

x
N

or
m

al
iz

ed
 T

ot
al

 E
ne

rg
y

Core L1 L2

AverageStreamclusterFluidanimateBlackscholesRadixRadiosityLUFMMFFTCholeskyBarnes

2.
93

2.
89

3.
49

3.
06

2.
08

2.
11

2.
23

3.
24

2.
15

2.
84

2.
70

3.
01

2.
98

3.
60

3.
17

2.
16

2.
17

2.
33

3.
35

2.
23

2.
91

2.
79

1.
74

1.
74

1.
78

1.
72

1.
41

1.
73

1.
62

1.
81

1.
53

1.
52

1.
66

Figure 10: Energy consumption of different designs with the same power, normalized to 16-Pipe2Vdd.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Barnes Cholesky FFT FMM LU Radiosity Radix Blackscholes Fluidanimate Streamcluster Average

N
or

m
al

iz
ed

 E
ne

rg
y-

D
el

ay
 P

ro
du

ct

1-HPRef 1-HPMode 8-DVFS+ 16-Pipe2Vdd 16-SCsp1 16-SCsp2 16-SCsz 16-SCmx

8.
2

5.
5

14
.5

7.
5

3.
2

5.
9

7.
3

8.
9

4.
8

6.
1

7.
0

8.
8

5.
8

15
.6

8.
0

3.
4

6.
3

7.
8

9.
5

5.
2

6.
6

7.
5

2.
2

2.
0

2.
2

2.
0

1.
3

2.
2

2.
1

2.
3

1.
7

1.
5

1.
9

Figure 11: Energy-delay product of different designs with the same power normalized to 16-Pipe2Vdd.

of MLP/ILP can also take advantage of bigger structures (16-
SCsz). Overall, 16-SCmx performs the best, as it provides a
latency reduction of 2 cycles for all instructions, and also
bigger structures for applications that can benefit from them.

Looking at the aggressive DVFS (8-DVFS+), we see that,
despite having a frequency advantage, it performs much worse
than 16-SCmx. This is due to its lower number of cores. The
high performance designs (1-HPRef and 1-HPMode) per-
form even worse, and they are practically identical.

Overall, for our programs, which try to represent the load
in large manycores, 16-SCmx reduces the execution time by
an average of 31% relative to 8-DVFS+, and by 15% relative
to 16-Pipe2Vdd. These are substantial reductions.

Figure 10 shows the energy consumed by all the designs.
The figure is organized as the previous one, except that the
bars are broken down into the contributions of core, L1, and
L2. Since this experiment is done at approximately constant
power, the bars in Figure 10 roughly follow those of Fig-
ure 9. From the figure, we also see that, going from Pipe2Vdd
to SC*, there are good savings in L2 energy. This is mostly
leakage eliminated by finishing the application earlier — even
though the storage structures in the pipeline use a higher Vdd

in SC*.
Overall, the best design (16-SCmx) reduces the energy con-

sumption by an average of 48% relative to 8-DVFS+, and by
13% relative to 16-Pipe2Vdd.

Finally, we consider the ED product. Figure 11 shows the
ED product for all the designs. We see that most of the Scal-
Core EEMode designs provide substantial ED product re-
ductions. 16-SCmx reduces the ED product by an average
of 60% relative to 8-DVFS+. We can see that not even this
aggressive DVFS level can get close to the efficiencies deliv-
ered by ScalCore. Moreover, 16-SCmx reduces the ED prod-
uct by an average of 23% relative to 16-Pipe2Vdd. Note that
16-Pipe2Vdd is already very energy efficient, with its separa-
tion of voltage rails for pipeline logic and storage structures.
These results provide a strong motivation for ScalCore.

8.2 Environment without Power Constraints
We now repeat the previous experiments without impos-

ing any power constraint. All the configurations run with 16
cores and, as a result, the power consumption is very dif-
ferent. Figure 12 shows the execution time organized like in
Figure 9. The names of the designs do not include the core

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Barnes Cholesky FFT FMM LU Radiosity Radix Blackscholes Fluidanimate Streamcluster Average

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

HPRef HPMode DVFS+ Pipe2Vdd SCsp1 SCsp2 SCsz SCMx

Figure 12: Execution time of different designs with 16 cores normalized to Pipe2Vdd.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Barnes Cholesky FFT FMM LU Radiosity Radix Blackscholes Fluidanimate Streamcluster Average

N
or

m
al

iz
ed

 E
ne

rg
y-

D
el

ay
 P

ro
du

ct HPRef HPMode DVFS+ Pipe2Vdd SCsp1 SCsp2 SCsz SCMx

Figure 13: Energy-delay product of different designs with 16 cores normalized to Pipe2Vdd.

count anymore. Note that, in the figure, DVFS+ and, espe-
cially, HPRef and HPMode are faster than SC*. Also, Fig-
ure 13 shows the resulting ED products of the different de-
signs. Thanks to the faster execution of HPRef and HPMode,
their ED is now substantially lower than SCmx. However, the
ED of DVFS+ is still higher than SCmx.

Unfortunately, these execution time improvements of HPRef,
HPMode, and DVFS+ come at a staggering power cost. In-
deed, extrapolating from Figure 8, we can see that each HPRef
and HPMode core consumes ≈16x the power of a SCmx
core. In addition, a DVFS+ core consumes over 2x the power
of a SCmx core. Consequently, in practice, this much power
may not be available in the chip, and some of the cores under
HPRef, HPMode, and DVFS+ may be powered down, be-
coming dark silicon. In fact, HPRef and HPMode cores are
most effective when executing mostly-serial codes, where a
few cores can use all the chip power budget. This motivates
the next section.

8.3 Dynamically Changing Configurations
To deliver the most energy-efficient execution, ScalCore

can dynamically reconfigure. Hence, in this section, we im-
pose the same power limit as in Section 8.1, but allow Scal-
Core to dynamically reconfigure between the SCmx EEMode
and HPMode. Recall that HPMode is penalized with a 5% f
reduction relative to HPRef. At any point, any unused cores
are power gated. We call the design Dyn-SC.

We run the NAS applications, where an application exe-
cutes a series of parallel loops and serial sections. We in-
strument the applications, so that ScalCore transitions to 16
SCmx cores before entering a loop, and transitions to one
HPMode core after finishing the loop. This setup models
support for program hints that directly invoke the power man-
agement unit. The analysis of more advanced interfaces to
trigger the reconfiguration is beyond our scope.

We compare Dyn-SC to the best reconfigurable design that
uses conventional processors. Such design dynamically switches
between one HPRef core outside loops (a very high perfor-
mance core without any f penalty) and 8 DVFS+ cores in the

loops (a very aggressive DVFS that sets Vdd to 0.6V). We
call this design Dyn-HPRef/8-DVFS+. Such design is free of
any ScalCore modifications.

As a reference, we also compare to three other designs.
One is a single HPRef core all the time (1-HPRef). A sec-
ond one is 16 SCmx cores all the time (16-SCmx). The third
one is a reconfigurable environment that transitions between
one HPMode core outside loops and 16 Pipe2Vdd cores in
the loops (Dyn-HPMode/16-Pipe2Vdd). This is a design that
includes some of the ideas of ScalCore, but not all. Specifi-
cally, it includes two Vdd domains in the pipeline and, hence,
level converters. However, it does not include ScalCore’s
pipeline stage fusing or storage structure resizing.

Figure 14 shows the execution time, energy consumed,
and ED product for the five designs. For each metric, the
bars correspond to the average of the three NAS applications
and are normalized to 16-SCmx.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

ExecutionTime Energy EDN
or

m
al

iz
ed

 E
x.

 T
im

e/
E

ne
rg

y/
E

D

1-HPRef
Dyn-HPRef/8-DVFS+

16-SCmx

Dyn-HPMode/16-Pipe2Vdd
Dyn-SC

2.08
2.01

4.15
1.04

1.52
1.58

Figure 14: Dynamically reconfiguring ScalCore.

Dyn-SC provides the lowest execution time and the lowest
ED product. It does not deliver the lowest energy because it
runs a high-performance core during the serial sections. In-
stead, 16-SCmx consumes less energy; however, it is slower.
Compared to 16-SCmx, Dyn-SC reduces the execution time
and the ED by 28% and 15%, respectively, at the cost of 19%
more energy. This is a very favorable tradeoff.

Dyn-SC is much better than Dyn-HPRef/8-DVFS+ and sub-
stantially better than Dyn-HPMode/16-Pipe2Vdd. The com-
parison of Dyn-SC to Dyn-HPMode/16-Pipe2Vdd shows the
impact of ScalCore’s pipeline stage fusing and storage struc-

11

ture resizing, over simply having two Vdd domains in the
pipeline. We can see that Dyn-SC reduces the execution time,
energy, and ED of Dyn-HPMode/16-Pipe2Vdd by 14%, 10%,
and 21%, respectively. Hence, both contributions of the Scal-
Core design, namely dual Vdd domains in the pipeline, and
the resulting pipeline stage fusing and structure resizing, are
beneficial.

The transition overhead between modes in Dyn-SC is neg-
ligible because of the relatively low frequency of transitions.
Specifically, Dyn-SC performs 6-32 transitions in 130-700
million cycles. Overall, ScalCore with dynamic reconfigura-
tion is a very attractive design for applications that change
phases.

9. RELATED WORK
There are prior works on variable-latency pipelines. For

example, when process variation makes a pipeline stage too
slow, ReCycle [45] uses cycle-time stealing between stages,
and ReVIVaL [26] makes a transparent latch opaque. On
the other hand, Collapsible Pipelines [16] dynamically make
a latch transparent when there is a bubble in the pipeline.
Pipeline Stage Unification [42] combines every two or ev-
ery four pipeline stages when the frequency is low. In this
paper, we focus only on combining storage-intensive stages
under dual-Vdd pipelines. Another variable latency pipeline
technique is GALS [41, 48]. GALS operates different stages
at different f, while we keep the same f for all stages.

Many works propose reconfigurable architectures that adapt
to resource occupancy (e.g., [1, 24, 35]). The goal is to im-
prove either performance or power efficiency. While these
ideas are similar to ours, we apply the changes only to adapt
to a low-Vdd mode, and have only two settings. In general,
these techniques and our work are complementary.

There is past work on dual-Vdd architectures. Dreslinski
et al. [9] apply a different Vdd to the core and to the caches.
The same approach is followed in the Intel Claremont pro-
totype [17, 38]. A detailed comparison to Claremont is pro-
vided in Section 5.3. Miller et al. [28, 29] provide two Vdd
rails and allow a core to dynamically switch between them.
In the presence of process variation, this technique hides
speed heterogeneity and tolerates slow functional units. Our
work is different in that different stages of the same pipeline
have different Vdds. In addition, pipeline stages do not switch
between Vdd rails; ScalCore merely changes the rails’ Vdd .

10. CONCLUSION
The goal of this paper was to design a voltage scalable

core — namely, one that can work in high-performance mode
(HPMode) at nominal Vdd , and in a very energy-efficient
mode (EEMode) at low Vdd . ScalCore introduces two ideas
to operate energy-efficiently in EEMode. First, it applies two
low Vdds to the pipeline: one to the logic stages (Vlogic) and
a higher one to the storage-intensive stages. Second, it in-
creases the low Vdd of the storage-intensive stages (Vop) even
further and exploits the speed differential to the logic ones
by either fusing storage-intensive stages or increasing the
size of storage structures in the pipeline. Simulations of 16
cores show that a design with ScalCores in EEMode is much
more energy-efficient than one with conventional cores and
aggressive DVFS: for approximately the same power con-

sumption, ScalCores reduce the average execution time of
programs by 31%, the energy consumed by 48%, and the
ED product by 60%. In addition, dynamically switching be-
tween EEMode and HPMode is very effective: it reduces the
average execution time and ED product by an additional 28%
and 15%, respectively, over running in EEMode all the time.

11. REFERENCES
[1] D. H. Albonesi, R. Balasubramonian, S. G. Dropsho, S. Dwarkadas,

E. G. Friedman, M. C. Huang, V. Kursun, G. Magklis, M. L. Scott,
G. Semeraro, P. Bose, A. Buyuktosunoglu, P. W. Cook, and S. E.
Schuster, “Dynamically Tuning Processor Resources with Adaptive
Processing,” Computer, December 2003.

[2] I. Burcea and A. Moshovos, “Phantom-BTB: A Virtualized Branch
Target Buffer Design,” in International Conference on Architectural
Support for Programming Languages and Operating Systems, March
2009.

[3] T. Burd, T. Pering, A. Stratakos, and R. Brodersen, “A Dynamic
Voltage Scaled Microprocessor System,” in International Solid-State
Circuits Conference, February 2000.

[4] A. Buyuktosunoglu, D. Albonesi, S. Schuster, D. Brooks, P. Bose,
and P. Cook, “A Circuit Level Implementation of an Adaptive Issue
Queue for Power-Aware Microprocessors,” in Great Lakes
Symposium on VLSI, March 2001.

[5] L. Chang, D. J. Frank, R. K. Montoye, S. J. Koester, B. L. Ji, P. W.
Coteus, R. H. Dennard, and W. Haensch, “Practical Strategies for
Power-Efficient Computing Technologies,” Proceedings of the IEEE,
February 2010.

[6] G. Chen, D. Sylvester, D. Blaauw, and T. Mudge, “Yield-Driven
Near-Threshold SRAM Design,” IEEE Transactions on VLSI
Systems, November 2010.

[7] H. D. Cho, K. Chung, and T. Kim, “Benefits of the big.LITTLE
Architecture,” February 2012, Samsung White Paper. [Online].
Available: http://www.arm.com/files/downloads/Benefits_of_the_
big.LITTLE_architecture.pdf

[8] R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and
T. Mudge, “Near-Threshold Computing: Reclaiming Moore’s Law
Through Energy Efficient Integrated Circuits,” Proceedings of the
IEEE, February 2010.

[9] R. Dreslinski, B. Zhai, T. Mudge, D. Blaauw, and D. Sylvester, “An
Energy Efficient Parallel Architecture Using Near Threshold
Operation,” in International Conference on Parallel Architectures
and Compilation Techniques, September 2007.

[10] M. Evers, P.-Y. Chang, and Y. N. Patt, “Using Hybrid Branch
Predictors to Improve Branch Prediction Accuracy in the Presence of
Context Switches,” in International Symposium on Computer
Architecture, May 1996.

[11] A. Gonzalez, F. Latorre, and G. Magklis, “Processor
Microarchitecture: An Implementation Perspective,” Synthesis
Lectures on Computer Architecture, December 2010.

[12] P. Greenhalgh, “Big.LITTLE Processing with ARM Cortex-A15 &
Cortex-A7,” September 2011, ARM White Paper. [Online].
Available:
http://www.arm.com/files/downloads/big_LITTLE_Final_Final.pdf

[13] S. Hsu, A. Agarwal, M. Anders, H. Kaul, S. Mathew, F. Sheikh,
R. Krishnamurthy, and S. Borkar, “A 2.8GHz 128-Entry 152b
3-Read/2-Write Multi-Precision Floating-Point Register File and
Shuffler in 32nm CMOS,” in Symposium on VLSI Circuits, June 2012.

[14] International Technology Roadmap for Semiconductors (ITRS),
“ITRS 2012 Edition.” [Online]. Available: http://www.itrs2.net.

[15] F. Ishihara, F. Sheikh, and B. Nikolic, “Level Conversion for
Dual-Supply Systems,” IEEE Transactions on VLSI Systems,
February 2004.

[16] H. M. Jacobson, “Improved Clock-Gating Through Transparent
Pipelining,” in International Symposium on Low Power Electronics
and Design, August 2004.

[17] S. Jain, S. Khare, S. Yada, V. Ambili, P. Salihundam, S. Ramani,
S. Muthukumar, M. Srinivasan, A. Kumar, S. Gb, R. Ramanarayanan,
V. Erraguntla, J. Howard, S. Vangal, S. Dighe, G. Ruhl, P. Aseron,

12

H. Wilson, N. Borkar, V. De, and S. Borkar, “A 280mV-to-1.2V
wide-operating-range IA-32 processor in 32nm CMOS,” in
International Solid-State Circuits Conference, February 2012.

[18] C.-H. Jan, U. Bhattacharya, R. Brain, S.-J. Choi, G. Curello,
G. Gupta, W. Hafez, M. Jang, M. Kang, K. Komeyli, T. Leo,
N. Nidhi, L. Pan, J. Park, K. Phoa, A. Rahman, C. Staus, H. Tashiro,
C. Tsai, P. Vandervoorn, L. Yang, J.-Y. Yeh, and P. Bai, “A 22nm SoC
Platform Technology Featuring 3-D Tri-gate and High-k/Metal Gate,
Optimized for Ultra Low Power, High Performance and High Density
SoC Applications,” in International Electron Devices Meeting,
December 2012.

[19] E. Karl, Z. Guo, J. Conary, J. Miller, Y.-G. Ng, S. Nalam, D. Kim,
J. Keane, U. Bhattacharya, and K. Zhang, “A 0.6V 1.5GHz 84Mb
SRAM Design in 14nm FinFET CMOS Technology,” in
International Solid-State Circuits Conference, February 2015.

[20] U. R. Karpuzcu, K. B. Kolluru, N. S. Kim, and J. Torrellas,
“VARIUS-NTV: A Microarchitectural Model to Capture the
Increased Sensitivity of Manycores to Process Variations at
Near-Threshold Voltages,” in International Conference on
Dependable Systems and Networks, June 2012.

[21] U. R. Karpuzcu, A. Sinkar, N. S. Kim, and J. Torrellas,
“EnergySmart: Toward Energy-Efficient Manycores for
Near-Threshold Computing,” in International Symposium on High
Performance Computer Architecture, February 2013.

[22] H. Kaul, M. Anders, S. Hsu, A. Agarwal, R. Krishnamurthy, and
S. Borkar, “Near-Threshold Voltage (NTV) Design: Opportunities
and Challenges,” in Design Automation Conference, June 2012.

[23] N. S. Kim, S. Draper, S.-T. Zhou, S. Katariya, H. R. Ghasemi, and
T. Park, “Analyzing the Impact of Joint Optimization of Cell Size,
Redundancy, and ECC on Low-Voltage SRAM Array Total Area,” in
IEEE Transactions on VLSI Systems, December 2012.

[24] Y. Kora, K. Yamaguchi, and H. Ando, “MLP-aware Dynamic
Instruction Window Resizing for Adaptively Exploiting Both ILP and
MLP,” in International Symposium on Microarchitecture, December
2013.

[25] S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures,” in
International Symposium on Microarchitecture, December 2009.

[26] X. Liang, G.-Y. Wei, and D. Brooks, “ReVIVaL: A Variation-Tolerant
Architecture Using Voltage Interpolation and Variable Latency,” in
International Symposium on Computer Architecture, June 2008.

[27] D. Markovic, C. C. Wang, L. P. Alarcon, T.-T. Liu, and J. M. Rabaey,
“Ultralow-Power Design in Near-Threshold Region,” Proceedings of
the IEEE, February 2010.

[28] T. Miller, X. Pan, R. Thomas, N. Sedaghati, and R. Teodorescu,
“Booster: Reactive Core Acceleration for Mitigating the Effects of
Process Variation and Application Imbalance in Low-Voltage Chips,”
in International Symposium on High Performance Computer
Architecture, February 2012.

[29] T. Miller, R. Thomas, and R. Teodorescu, “Mitigating the Effects of
Process Variation in Ultra-low Voltage Chip Multiprocessors using
Dual Supply Voltages and Half-Speed Units,” in IEEE Computer
Architecture Letters, 2012.

[30] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “CACTI
6.0: A Tool to Understand Large Caches,” April 2009.

[31] K. U. Mutsunori, M. Igarashi, T. Ishikawa, M. Kanazawa,
M. Takahashi, M. Hamada, H. Arakida, T. Terazawa, and T. Kuroda,
“Design Methodology of Ultra Low-power MPEG4 Codec Core
Exploiting Voltage Scaling Techniques,” in Design Automation
Conference, June 1998.

[32] K. Pagiamtzis and A. Sheikholeslami, “Content-Addressable
Memory (CAM) Circuits and Architectures: A Tutorial and Survey,”
IEEE Journal of Solid-State Circuits, March 2006.

[33] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-Effective
Superscalar Processors,” in International Symposium on Computer
Architecture, June 1997.

[34] I. Park, C. L. Ooi, and T. N. Vijaykumar, “Reducing Design
Complexity of the Load/Store Queue,” in International Symposium
on Microarchitecture, December 2003.

[35] P. Petrica, A. M. Izraelevitz, D. H. Albonesi, and C. A. Shoemaker,
“Flicker: A Dynamically Adaptive Architecture for Power Limited

Multicore Systems,” in International Symposium on Computer
Architecture, June 2013.

[36] M. Qazi, M. Sinangil, and A. Chandrakasan, “Challenges and
Directions for Low-Voltage SRAM,” IEEE Design Test of Computers,
January 2011.

[37] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos, “SESC
Simulator,” January 2005.

[38] G. Ruhl, S. Dighe, S. Jain, S. Khare, and S. Vangal, “IA-32 Processor
with a Wide-Voltage-Operating Range in 32-nm CMOS,” IEEE
Micro, March-April 2013.

[39] J. Sartori, B. Ahrens, and R. Kumar, “Power Balanced Pipelines,” in
International Symposium on High Performance Computer
Architecture, February 2012.

[40] E. Seevinck, F. List, and J. Lohstroh, “Static-Noise Margin Analysis
of MOS SRAM Cells,” IEEE Journal of Solid-State Circuits, October
1987.

[41] G. Semeraro, G. Magklis, R. Balasubramonian, D. Albonesi,
S. Dwarkadas, and M. Scott, “Energy-Efficient Processor Design
Using Multiple Clock Domains with Dynamic Voltage and Frequency
scaling,” in International Symposium on High Performance Computer
Architecture, February 2002.

[42] H. Shimada, H. Ando, and T. Shimada, “Pipeline Stage Unification:
A Low-Energy Consumption Technique for Future Mobile
Processors,” in International Symposium on Low Power Electronics
and Design, August 2003.

[43] M. Sinangil, N. Verma, and A. Chandrakasan, “A Reconfigurable 8T
Ultra-Dynamic Voltage Scalable (U-DVS) SRAM in 65 nm CMOS,”
IEEE Journal of Solid-State Circuits, November 2009.

[44] The Tech Report, “The Exynos 5433 SoC.” [Online]. Available:
http://techreport.com/review/27539/samsung-galaxy-note-4-with-
the-exynos-5433-processor/2

[45] A. Tiwari, S. Sarangi, and J. Torrellas, “ReCycle: Pipeline Adaptation
to Tolerate Process Variation,” in International Symposium on
Computer Architecture, June 2007.

[46] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and
R. L. Stamm, “Exploiting Choice: Instruction Fetch and Issue on an
Implementable Simultaneous Multithreading Processor,” in
International Symposium on Computer Architecture, May 1996.

[47] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
Reduced CPU Energy,” in Operating Systems Design and
Implementation, November 1994.

[48] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark, “Formal Online
Methods for Voltage/Frequency Control in Multiple Clock Domain
Microprocessors,” in International Conference on Architectural
Support for Programming Languages and Operating Systems,
October 2004.

[49] Y. Zhao, J. Li, and K. Mohanram, “Multi-Port FinFET SRAM
Design,” in Great Lakes Symposium on VLSI, May 2013.

13

