
Dynamic Thermal Management for High-Performance Microprocessors

David Brooks
Department of Electrical Engineering

Princeton University
dbrooks @ee.princeton.edu

Abstract

With the increasing clock rate and transistor count of
today’s microprocessors, power dissipation is becoming a
critical component of system design complexity. Thermal
and power-delivery issues are becoming especially critical
for high-performance computing systems.

In this work, we investigate dynamic thermal manage-
ment as a technique to control CPUpower dissipation. With
the increasing usage of clock gating techniques, the average
power dissipation typically seen by common applications is
becoming much less than the chip’s rated maximum power
dissipation. However; system designers still must design
thermal heat sinks to withstand the worst-case scenario.

We define and investigate the major components of any
dynamic thermal management scheme. Specijcally we ex-
plore the tradeoffs between several mechanisms for re-
sponding to periods of thermal trauma and we consider the
effects of hardware and sofnyare implementations. With ap-
propriate dynamic thermal management, the CPU can be
designed for a much lower maximum power rating, with
minimal performance impact for typical applications.

1 Introduction

Today’s highest performance microprocessors contain
on the order of one hundred million transistors with this
number continuing to grow with Moore’s Law. The ma-
jority of the transistors on these chips exist to extract ILP
and to reduce memory access times for a range of com-
mon applications; unfortunately, the performance benefits
of many of these techniques are gradually becoming over-
shadowed by increased design complexity and power dis-
sipation. As we move towards billion transistor micropro-
cessors, the growing power budgets of these chips must be
addressed at all levels of the design cycle.

The system complexity associated with increased power
dissipation can be divided into two main areas. First, there
is the cost and complexity of designing thermal packaging
which can adequately cool the processor. It is estimated
that after exceeding 35-40W, additional power dissipation
increases the total cost per CPU chip by more than $ I N

Margaret Martonosi
Department of Electrical Engineering

Princeton University
mrm @ee.princeton.edu

[23]. The second major source of design complexity in-
volves power delivery, specifically the on-chip decoupling
capacitances required by the power distribution network.

Unfortunately, these cooling techniques must be de-
signed to withstand the maximum possible power dissipa-
tion of the microprocessor, even if these cases rarely oc-
cur in typical applications. For example, while the Alpha
21 264 processor is rated as having a maximum power dis-
sipation of 95W when running “max-power” benchmarks,
the average power dissipation was found to be only 72W
for typical applications [IO]. The increased use of clock
gating and other power management techniques that target
average power dissipation will expand this gap even further
in future processors. This disparity between the maximum
possible power dissipation and the typical power dissipa-
tion suggests dynamic thermal management techniques to
ensure that the processor does not reach these maximum
power dissipation levels. That is, we seek to explore sce-
narios where the cooling apparatus is designed for a wattage
less than the true maximum power, and dynamic CPU ap-
proaches guarantee that this designed-for level is never ex-
ceeded during a program run.

With many industrial designers predicting that power de-
livery and dissipation will be the primary limiters of per-
formance and integration of future high-end processors, we
feel that some form of dynamic thermal management will
eventually be seen as a performance optimization, enabling
larger chips to be built which would otherwise not be feasi-
ble [IO, 23, 2, 121. If die area and the number of transistor
per chip become constrained by power density, techniques
that can constrain the maximum possible power dissipation
could allow designers to include more transistors per chip
than would otherwise be possible, thus leading to increased
performance.

In this work, we define and examine the generic mech-
anisms inherent in dynamic thermal management (DTM)
schemes. Section 2 provides an overview and background
on dynamic thermal management. We explore and compare
the potential for hardware and software-based implemen-
tations of several dynamic thermal management schemes.
Section 3 discusses the methodology used in the remainder

0-7695-1019-1/01 $10.00 0 2001 IEEE
171

Authorized licensed use limited to: University of Illinois. Downloaded on August 24,2021 at 15:26:24 UTC from IEEE Xplore. Restrictions apply.

mailto:ee.princeton.edu
mailto:ee.princeton.edu

of the paper. We then break thermal management systems
into three components: triggers, responses, and initiation
policies, and discuss each of them in Sections 4,5, and 6 re-
spectively. The core of any DTM system is how it responds
to a thermal emergency (e.g. frequency scaling, execution
throttling, etc.). While this paper provides data on a number
of possible responses, we feel that further work may iden-
tify even more effective ones. Thus, Section 7 outlines a
methodology for identifying promising new response tech-
niques by comparing power and performance correlations.
Finally, Section 8 offers conclusions.

2 Dynamic Thermal Management: Overview
and Strategies

This paper explores policies and mechanisms for imple-
menting dynamic thermal management in current and fu-
ture high-end CPUs. As we use it, the term dynamic ther-
mal management refers to a range of possible hardware and
software strategies which work dynamically, at run-time, to
control a chip’s operating temperature. Traditionally, the
packaging and fans for a CPU or computer system were de-
signed to be able to maintain a safe operating temperature
even when the chip was dissipating the maximum power
possible for a sustained period of time, and therefore gener-
ating the highest amount of thermal energy. This worst-case
thermal scenario is highly unlikely, however, and thus such
worst-case packaging is often expensive overkill. DTM al-
lows packaging engineers to design systems for a target sus-
tained thermal value that is much closer to average-case for
real benchmarks. If a particular workload operates above
this point for sustained periods, a DTM response will work
to reduce chip temperature. In essence, DTM allows design-
ers to focus on average, rather than worst-case, thermal con-
ditions in their designs. Until now, techniques developed
to reduce average CPU power have garnered only moder-
ate interest among the designers of high-end CPUs because
thermal considerations, rather than battery life, were their
primary concern. Therefore, in addition to reducing pack-
aging costs, DTh4 improves the leverage of techniques such
as clock gating designed to reduce average power [23, 31.

The key goals of DTM can be stated as follows: (i) to
provide inexpensive hardware or software responses, (ii)
that reliably reduce power, (iii) while impacting perfor-
mance as little as possible. Voltage and frequency scaling
are two methods for DTM that have been implemented in
current chips [15, 241. Unfortunately, little work has been
done on quantifying the impact of voltage or frequency scal-
ing on application performance. This paper seeks to ad-
dress this need, while also proposing other microarchitec-
tural approaches for implementing DTM. We also propose a
methodology based on performance and power correlations
for seeking out new DTM responses.

2.1 Overview and Terminology

In this paper, we are primarily concerned with reduc-
ing the maximum power dissipation of the processor. From
a pure hardware point of view, the maximum power dis-
sipation occurs when all of the structures within the pro-
cessor are active with maximum switching activity. How-
ever, mutual exclusions in the underlying control structures
make this scenario impossible. In reality, the maximum
power dissipation is constrained by the software program
that can maximize the usage and switching activity of the
hardware. Special max-power benchmarks can be written
to maximize the switching activity of the processor. These
benchmarks are often quite esoteric, perform no meaning-
ful computation, and dissipate higher power than “real” pro-
grams. Thus, DTM techniques could be used solely to tar-
get power levels seen in maximum power benchmarks and
would rarely be invoked during the course of typical ap-
plications. In this paper, we also consider more aggressive
DTM designs which seek to further reduce the amount of
cooling hardware necessary in machines. In Section 5.2 we
discuss the tradeoffs between cooling hardware and perfor-
mance loss in more detail.

Designed-for Cooling
Capacity w/out DTM

Designed-for Cooling
Capacity w/ DTM

I___._____._.___.___.,.. , , . .____I____.____..

Initiation and
Response Delay Shutoff

Time

Figure 1. Overview of Dynamic Thermal Man-
agement (DTM) technique.

Figure 1 offers a motivating example of how dynamic
thermal management (DTM) can work. This figure plots
chip temperature versus time (in cycles). In this figure,
there are three horizontal dashed lines. The top-most line
shows the designed-for cooling capacity of the machine
without DTM. The second line shows that the cooling ca-
pacity could be reduced if dynamic techniques were im-
plemented, because DTM reduces the effective maximum
power dissipation of the machine. Finally, the lowest hor-
izontal line shows the DTM trigger level. This is the tem-
perature at which the DTM techniques are engaged.

Figure 1 has two curves which show chip temperature
for some sequence of code being executed on the machine.
The upper, solid curve is executed on the machine without

172

Authorized licensed use limited to: University of Illinois. Downloaded on August 24,2021 at 15:26:24 UTC from IEEE Xplore. Restrictions apply.

DTM, and the lower, dotted curve is executed on a machine
that has implemented DTM. Both curves are the same un-
til the DTM trigger level is exceeded. At this point, after a
small delay to engage the response, the curves diverge. In
the uppermost curve the chip temperature slowly increases
and then falls back below the trigger level. The lower curve
shows how DTM would affect the same sequence of code.
In this case, the DTM response is able to reduce the power
dissipation and hence the chip temperature; the temperature
never exceeds the designed-for cooling capacity. Eventu-
ally, the temperature decreases (as in the non-DTM curve),
and the response is dis-engaged with some performance de-
lay relative to the non-DTM curve.

Trigger Tum Check Check Tum
Reached Response On Temo Temo Resvonse

Initiation Response Policy Shutoff
Delay Delay Delay Delay

+Response On+

Figure 2. Mechanisms for Dynamic Thermal
Management.

Figure 2 breaks down a DTM instance into several com-
ponents. First, DTM is triggered. The triggering event may
be a thermal sensor, a power estimator, or other gauge which
indicates when DTh4 is needed. Once the trigger goes off,
there is some initiation delay while, for example, an operat-
ing system interrupt and handler are invoked to interpret the
triggering event. Once the handler has been executed, some
DTM response begins. For example, possible responses in-
clude voltage or frequency scaling [17], or some of the mi-
croarchitectural ideas we discuss in later sections. Depend-
ing on the type of response chosen, there may be some de-
lay inherent in invoking it; we refer to this time as response
delay. Once the response is in effect, the next issue con-
cerns when to turn it off. Turning the response off as soon
as the temperature dips below the threshold may be unwise;
temperature may fluctuate around the threshold and warrant
keeping the response turned on. We use the term policy de-
lay to refer to the number of cycles we wait before check-
ing to see if the temperature has dipped below the triggering
level. Finally, once the DTM system has determined that the
response should be turned off, there is often a shutoff delay
while, for example, the voltage or frequency is readjusted.

Implementing an effective DTM system, therefore, in-
volves several key design choices which we consider
throughout the remainder of this paper:

Selecting simple and effective triggers (Section 4),

0 Identifying useful response mechanisms (Section 5) ,

0

2.2

Developing policies for when to turn responses on and
off (Section 6).

Background and Related Work

Some dynamic thermal management techniques have
previously been explored. For example, the G3 and G4
PowerPC microprocessors from Motorola include a thermal
temperature sensor in hardware and an interrupt capability
to notify software of when a particular temperature has been
reached [19,21]. The processor also includes an instruction
cache throttling mechanism that allows the processor’s fetch
bandwidth to be reduced when the CPU reaches a tempera-
ture limit.

The Transmeta Crusoe processor includes “LongRun”
technology which dynamically adjusts CPU supply voltage
and frequency to reduce power consumption [24]. While
voltage and frequency tuning are quite effective at reducing
power consumption (power scales linearly with clock fre-
quency and with the square of the supply voltage), the delay
in triggering these responses is necessarily higher than with
microarchitectural techniques that are more localized. One
of the goals of this paper is to provide an overall view for
the tradeoffs between initiation delay, response delay, and
performance overhead for a number of techniques includ-
ing both previously published techniques as well as ones
newly-proposed in this paper.

In addition to the fairly-recent Crusoe work, the ACPI
(Advanced Configuration and Power Interface) specifica-
tion likewise works to have hardware and software coop-
erate to manage power dynamically [1]. Unlike our work or
those described above, ACPI is very coarse-grained. That
is, power management in ACPI involves actions like turning
on or off U 0 devices or managing multiple batteries. Our
work seeks to provide a much more fine-grained solution to
thermal problems within the CPU itself. Recent work, in-
cluding our own, has operated on different thursts to explore
this domain [4, 22, 131. These papers and our own each
focus on distinct classes of processor architectures. Rohou
and Smith have also considered using temperature feedback
to guide the operating system in controlling CPU activity on
a per-application basis [20].

Finally, we also note that the work by both Motorola and
Transmeta is mainly geared toward improving battery life in
portable machines. Our work, in contrast, has thermal pack-
aging in high-end CPUs as its main thrust. This context is
more performance sensitive than is power management for
laptops. Our overall goal is to guarantee much lower worst-
case power consumption, so that cheaper packaging can be
used, with as little impact on performance as possible.

173

Authorized licensed use limited to: University of Illinois. Downloaded on August 24,2021 at 15:26:24 UTC from IEEE Xplore. Restrictions apply.

Parameter I Value

LSQRUU size
Fetch Queue Size
Fetch width
Decode width
Issue width
Commit width
Functional Units

40/80 instructions
8 instructions
4 instructionskycle
4 instructionskycle
4 instructionskycle (out-of-order)
4 instructions/cycle (in-order)
4 INT ALUs, 1 INT MUL/DIV
2 FP ADDMULISQRT

L1 I-cache

L2

Memorv

32B blocks, 1 cycle latency
64K, 2-way (LRU)
32B blocks, 1 cycle latency
Unified, 2M, 4-way (LRU)
32B blocks, 12-cycle latency
100 cvcles

TLBs I 128-entry, 30-cycle miss latency

Table 1. Baseline Configuration of Simulated
Processor

3 Methodology

We have developed an architectural-level power model-
ing tool called Wattch [5]. Wattch provides power mod-
eling extensions to the Simplescalar architecture simulator
[7]. Wattch’s power modeling infrastructure is based on pa-
rameterized power models of common structures present in
modern superscalar microprocessors. Per-cycle power es-
timates are generated by scaling these power models with
hardware access counts and activity factors from the perfor-
mance simulator.

3.1 Simulation Model Parameters

Unless stated otherwise, our results in this paper model
a processor with the configuration parameters shown in Ta-
ble l . For technology parameters, we use the process pa-
rameters for a .35um process at 600MHz. We use Wattch’s
aggressive clock gating style for all results. This models
power scaling which is linear with the number of active
ports on any particular unit.

3.2 Benchmark Applications

We evaluate our ideas on programs from the SPECint95
and SPECfp95 benchmark suites. SPEC95 programs are

representative of a wide mix of current integer and floating-
point codes. We have compiled the benchmarks for the Al-
pha instruction set using the Compaq Alpha cc compiler
with the following optimization options as specified by the
SPEC Makefile: -migrate -stdl -05 -if0 -nonshared. For
each program, we simulate 200M instructions.

3.3 Power vs. Temperature

Wattch provides per-cycle power estimates, but one chal-
lenge in this research has been translating these power esti-
mates into chip-level temperature variations. The most ac-
curate approach would be to develop a model for the chip
packaging and heat sink in a microprocessor. We are cur-
rently discussing such models with packaging engineers,
but have abstracted them for the research presented here.
We use the average power over a suitably large chunk of
cycles (lOk, look, and 1M) as a proxy for temperature [181.

4 Dynamic Thermal Management: Trigger
Mechanisms

Any dynamic response technique requires a trigger
mechanism to engage the response during program execu-
tion. In this section, we consider two aspects of the trig-
ger mechanism. First, we describe several possible trigger
mechanisms for dynamic thermal management. Second, we
discuss the rationale for determining an appropriate trigger
limit to use in the DTM system. Sections 5 and 6 discuss
the other key parts of the system: response techniques and
initiation mechanisms.

4.1 Trigger Mechanisms

For our experimental setup we use an abstraction of chip
temperature by using the moving average of power dissipa-
tion for the last 10,000 cycles of the processor’s operation.
This trigger mechanism is similar to an on-chip temperature
sensor. We will discuss the details of the temperature sen-
sor as well as several other trigger mechanisms that could
be used as abstractions for temperature.

0 Temperature Sensors for Thermal Feedback

In the PowerPC dynamic thermal management system,
thermal feedback from an on-chip temperature sensor
is used as the trigger mechanism [21]. In the proposed
scheme, the temperature sensor compares the junction
temperature with a user programmable threshold. If
the value is exceeded an interrupt is triggered allowing
the operating system to invoke a response mechanism.
This is the basic trigger mechanism that we evaluate in
Section 5 with a variety of response mechanisms.

0 On-chip Activity Counters

174

Authorized licensed use limited to: University of Illinois. Downloaded on August 24,2021 at 15:26:24 UTC from IEEE Xplore. Restrictions apply.

Another possible source of information regarding the
current chip temperature is through the use of activity
monitors or on-chip performance counters [8]. These
devices record “activity factors” for various structures
within the processor and thus provide a gauge of much
work is being done and the correspondingly the ther-
mal state of the machine.

tomcatv
fPPPP

0 Dynamic profiling analysis

The runtime system of the machine can be responsible
for determining when the application or user-behavior
does not require the full resources of the computing
system and trigger a response. For example, operating
systems often provide a wait process which is entered
when there is no work to be performed, or address ac-
cess information can be used to determine when the
processor is idling [161.

In addition, certain real-time and user-interactive ap-
plications inherently set certain acceptable perfor-
mance levels. These types of applications would al-
low dynamic thermal management to occur when the
specified rate is exceeded [9].

0 Compile-time trigger requirements

Static analysis at compile time can be used to esti-
mate the performance of applications. We feel that in a
similar manner, the compiler could estimate the high-
power code segments and insert instructions specify-
ing that DTM triggers should occur. In EPIC or VLIW
where more of the parallelism is exposed by the com-
piler, this method would be more fruitful.

Comparing the viability of various trigger mechanisms
is a topic for future research in this area. Relying exclu-
sively on chip temperature sensors may have some draw-
backs. First, the temperature sensor only approximates the
average chip temperature; multiple sensors may be needed
on large chips. Second, there may be hysteresis between
the temperature reading and the actual temperature. Pure
hardware solutions also do not provide information about
the workload; a combination of temperature sensors, activ-
ity counters, and software analysis may more effective than
any of the techniques taken alone. For the results presented
in this paper, we use an abstracted trigger mechanism based
on interrupts when modeled power reaches a a pre-set trig-
ger threshold. This approximates the situation of a CPU
with a single temperature sensor.

96.1 % 25.5W
98.4% 32.9W

4.2 Thermal Trigger and Emergency Settings

The second decision that must be made within the trigger
mechanism is the pre-set trigger threshold. We will define
a “thermal trigger” to be the temperature threshold at which

the trigger mechanism initiates the response mechanism to
begin to cool the processor’s temperature. A “thermal emer-
gency” is a second temperature threshold set to a higher
level and is used as a gauge of how successful the response
mechanism was in dealing with the increase in temperature.
Except where noted, in our simulation environment thermal
triggers and emergencies occur if the moving average of full
chip power dissipation for the past 10,000 cycles exceeds
the pre-set trigger and emergency wattage values. Likewise
there are also triggers that indicate the CPU has returned to
a safe temperature. At these trigger points, the CPU can
begin returning to normal operation.

1 .O% 22.7W
1.6% 21.6W
32.7% 24.3W
50.9% 24.8W

vortex 61.6% 24.6W
su2cor 70.5% 25.1 W

Table 2. Baseline Configuration of Simulated
Processor

In the next two sections we present analysis for the case
where the response is triggered when the 10k moving av-
erage exceeds 24W and a full-fledged thermal emergency
is considered to occur when the 10k moving average ex-
ceeds 25W. In Section 5.2, we consider the effects of vary-
ing the trigger level and the 10k cycle thermal window, but
for the rest of the results we will use these values. Table
2 shows the percent of cycles that were above the thermal
emergency threshold for the baseline system without DTM
with the 24W trigger. There are three main categories of
applications; the remainder of our charts will be sorted as
follows:

Mild Thermal Demands: The first two benchmarks
have less than 10% of their cycles in thermal emer-
gencies with average powers much less than the emer-
gency level.

Intensive Thermal Demands: The second group of four
benchmarks ranges from 32% to 96%. Tomcam fell
into this class because its average power is only just
above the emergency level.

Extreme Thermal Demands: Fpppp is the extreme
case in which 98% of the cycles exceeded the ther-
mal threshold and the average power was 7W above
the threshold.

We selected this trigger setting and this set of applica-
tions so we could observe the impact of DTM in a range

175

Authorized licensed use limited to: University of Illinois. Downloaded on August 24,2021 at 15:26:24 UTC from IEEE Xplore. Restrictions apply.

of scenarios with varying thermal demands. We have ne-
glected compress and m88ksim from the analysis because
neither application had any cycles exceeding the chosen
emergency point.

5 Dynamic Thermal Management: Response
Mechanisms

In this section we consider the second basic mechanism
within a dynamic thermal management architecture. The
goal of designing a good DTM scheme is to reduce power
with as small a performance loss as possible. A key part to
realizing this goal is the response mechanism that throttles
power dissipation in the system.

In this work, we consider five response mechanisms.
Three of these are microarchitectural responses: I-cache-
toggling, speculation control by restricting the number of
unresolved branches, and decode bandwidth throttling (sim-
ilar to Motorola’s I-cache throttling). We also consider
clock frequency scaling and a combination of clock fre-
quency scaling and voltage scaling.

Clock Frequency Scaling
Clock frequency scaling essentially trades a linear per-
formance loss for a linear power savings. While in
principle clock frequency scaling is trivial to imple-
ment, there may be delays incurred when changing
clock rates. Furthermore, communicating with syn-
chronous devices on the system bus may become more
complicated.

Voltage and Frequency Scaling
Transmeta’s LongRun technology performs dynamic
clock frequency scaling along with dynamic’ voltage
scaling to reduce power dissipation when necessary
[24]. Obviously this requires detailed timing analysis
and careful attention to circuit design choices [6]. Fur-
thermore, as future process technologies scale to lower
base supply voltages, dynamic voltage scaling may
become more difficult. This is especially true when
standby leakage currents become important. Leak-
age currents are directly related to the supply voltage;
lowering the supply voltage to dynamically reduce dy-
namic power would have a corresponding increase in
the standby leakage current.

Decode Throttling

The PowerPC G3 microprocessor uses a micro-
architectural level dynamic thermal management tech-
nique called instruction cache throttling to restrict the
flow of instructions to the processor core [21]. This
scheme relies on clock gating to reduce power dissipa-
tion as the flow of instructions is restricted. As moti-
vation for selecting I-cache throttling instead of clock

frequency scaling, the authors cite the difficulty in im-
plementing dynamic clock control for the on-chip PLL
as well as the fact the chip’s L2 cache interface oper-
ates at a different clock rate from the chip’s core.

Speculation Control

Speculation control is similar to Manne’s work on
speculative pipeline gating based on branch confi-
dence estimation [l I] . However, with the method pro-
posed here, instead of basing the speculation control
on branch confidence as in [111, we arbitrarily restrict
the amount of speculation in the pipeline whenever a
thermal trigger level is reached. To implement this, a
counter is incremented whenever a branch is decoded
and decremented whenever a branch resolves. If the
counter exceeds a software-set limit, the decode stage
stalls until enough branches have been resolved. The
infrastructure for restricting the number of resolved
branches is most likely already in place in most pro-
cessors, since they limit the number of branches in the
pipeline to restrict the additional state required for each
active branch.

I-cache Toggling

We also propose a microarchitectural response tech-
nique called I-cache toggling. This response involves
disabling the instruction fetch unit (I-cache and branch
prediction) and using the instruction fetch queue to
feed the pipeline. The fetch unit can be disabled every
cycle, every other cycle, or at any specified interval as
specified by the interrupt call.

Obviously other techniques, or combinations of tech-
niques, could be used as the response mechanism. In Sec-
tion 7, we discuss a systematic methodology for determin-
ing new response techniques.

Both the trigger and the various response mechanisms
that have been discussed could be programmable, allow-
ing system designers to specify thermal management lev-
els based on the amount of heat-sink technology in the sys-
tem. For example, more expensive high-end server systems
could have higher trigger limits and allow more unresolved
branches, while cheaper low-end desktop systems would
have lower trigger limits corresponding to their smaller
heat-sinks. In addition, the individual response mecha-
nisms allow a variation in the amount of throttling to be
performed.

5.1 Response Mechanism Results

We use two metrics to evaluate the DTh4 schemes. First,
the scheme should reduce the number of cycles in which
the processor’s temperature exceeds the thermal emergency

176

Authorized licensed use limited to: University of Illinois. Downloaded on August 24,2021 at 15:26:24 UTC from IEEE Xplore. Restrictions apply.

threshold. The second metric that we use is the overall per-
formance loss that the DTM technique incurs. Since the
schemes that we evaluate rely on microarchitectural as well
as frequency scaling techniques, we consider total execu-
tion time as our performance metric.

We present analysis for the case where the response is
triggered when the 10k moving average exceeds 24W and a
full-fledged thermal emergency is considered to occur when
the 10k moving average exceeds 25W. We also assume here
that the various responses are initiated by a 250-cycle inter-
rupt from the operating system in a manner similar to that of
the PowerPC, but in Section 6 we consider additional hard-
ware support which improves the performance of thermal
management by eliminating this operating system overhead.

For the response that includes voltage scaling we assume
a 10 microsecond delay to switch frequencies and a 20 mi-
crosecond response delay to switch voltages. During this
delay we assume that the processor is stalled; this is consis-
tent with the delay that Transmeta reports when switching
between frequency and voltage states [141. For the scaling
techniques we set the policy delay to be 15 microseconds;
in Section 6 we consider extending this delay to reduce the
performance overhead of initiating the response. Finally,
we assume that the processor voltage scales proportionally
to what is reported in [14] for each frequency level. For
example, when we scale frequency down by IO%, voltage
is scaled down by 4.2% for the combined voltage and fre-
quency scaling technique.

1 toggle2
0 wves 1

Figure 3. Reduction in performance com-
pared to baseline for microarchitecture tech-
niques.

Figure 3 shows the overall program performance reduc-
tion from the baseline for the microarchitectural techniques.
Figure 4 shows the same results for the frequency/voltage
scaling based techniques. Within these figures the first two
sets of bars correspond to the benchmarks with mild ther-
mal demands. The next five bars have intensive thermal de-
mands. Finally, we show the fpppp, the extreme case bench-
mark.

Within Figure 3 there are four bars for each benchmark.

1

.E - 0.9

0.7
0.6

'$ 0.5
2 0 4
8 03

$ 0 8

0 fscale 10

1 fscale30
U vfscalelo

5 0.2

Figure 4. Reduction in performance com-
pared to baseline for frequency/voltage scal-
ing techniques.

The first two bars correspond to I-cache toggling; togglel
is the case where the I-cache is disabled every cycle dur-
ing the response, toggle2 corresponds to the case in which
it is disabled every other cycle. The third bar labeled unresl
indicates that the maximum number of unresolved branches
allowed in the pipeline is restricted to one before the decode
stage is stalled. The final bar decode2 indicates that the de-
code bandwidth is reduced by two instructions per cycle re-
spectively. (We have considered additional settings for the
above parameters, but to save space, we have selected the
parameters that performed the best.) Within both Figure 3
and 4, bars which are cross-hatched (for example, fpppp's
toggle2, unresl, and decode2 bars) indicate that the thermal
emergencies were not entirely reduced for this configura-
tion. Figure 4 also has four bars per benchmark. The first
two bars correspond to scaling down the frequency by 30%
and 10%. The last two bars correspond to scaling both the
frequency and the voltage by 30% and 10%.

For many of the benchmarks, all of the techniques were
able to entirely eliminate the thermal emergencies in the
machine at this trigger level. DTM was not successful in
entirely removing thermal emergencies with ijpeg with the
unresl technique andfippp with three of the microarchitec-
tural techniques and fscalel0.

For the benchmarks with mild thermal demands, the mi-
croarchitectural level techniques incurred an average perfor-
mance penalty was 2%; the voltage and frequency scaling
techniques had a 7% drop. For the benchmarks with inten-
sive thermal demands, the reduction in thermal emergen-
cies incurred a 12% performance penalty for the microar-
chitectural techniques and a 22% performance penalty for
the scaling techniques. Only togglel , fscale30%, vfscalel0,
and vfscale30 were effective at reducing the number of ther-
mal emergencies withfpppp; this came at over a 35% per-
formance penalty.

Clearly the performance degradation of DTM at this trig-
gedemergency level is significant for the applications with

177

Authorized licensed use limited to: University of Illinois. Downloaded on August 24,2021 at 15:26:24 UTC from IEEE Xplore. Restrictions apply.

large thermal demands. The performance degradation from
these techniques can be broken down into two components.
The first component is the performance drop due to invo-
cation of the techniques. This includes the overhead of
the operating system interrupt calls and the time needed
to dynamically adjust the frequency and voltage scaling of
the system. The second component is the IPC drop of the
microarchitectural techniques or the frequency degradation
penalty of the scaling techniques. For example with su2cor
and the unresl trigger, 26% of the performance degradation
was due to the interrupt overhead to engage and disengage
the trigger. The remainder of the performance drop was
the IPC degradation due to restricting the number of un-
resolved branches. As expected, the trigger overhead with
frequency and voltage scaling techniques is much higher;
over 70% of the performance loss is incurred due to the in-
terrupt calls and overhead in adjusting the clock rate with
frequency scaling and over 75% with combined voltage and
frequency scaling.

These trends tend to hold across the benchmarks and
across the different styles of responses. There are two major
reasons for the larger invocation overhead of the frequency
and voltage scaling techniques. First, the overhead of fre-
quency and voltage scaling is significantly higher than the
microarchitectural techniques. Second, because of varia-
tions in application behavior which cause changes in the
thermal behavior of the system these policies may be en-
abled or disabled many times during program execution.
This is especially true when DTM mechanisms are in place
to regulate temperature. Obviously for these applications,
the large invocation overhead is magnified. In the next sec-
tion we consider additional hardware and other techniques
that can reduce the performance overhead of trigger engage-
ment. The results also show that there is room for applica-
tion specific selection of response techniques; certain re-
sponse techniques perform much better than others on an
individual benchmark basis.

5.2 Thermal Trigger and Emergency Settings

In Figure 5 we consider an idealized version of the vfs-
cale30 policy that has no initiation delay. This figure shows
the the percent performance loss relative to the total exe-
cution time of the baseline system for DTM while varying
the thermal trigger settings ranging from 20-34W. For ex-
ample, fpppp runs 27% slower with a trigger of 20W than
it does with no DTM, but its max power without DTM ex-
ceeds 40W in some cases. This performance penalty is in-
curred by the response mechanism; in this case the response
is a version of frequency scaling. When the trigger is set at
a conservative range (above 30W for these benchmarks),
most of the benchmarks see very little performance degra-
dation. Even with the most conservative approach, dynamic
thermal management allows the chip's maximum power rat-

30% 7 - fPPPP
+iJpeg

s3cor
+cc1

't
I

0% ' I ,%-d =,"L-t"+++
20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 SO

Tngger Level (Watts)

Figure 5. Performance Loss at various trigger
levels. Higher trigger levels (30-50 Watts) of-
fer less packaging savings, but have nearly
zero performance impact. More aggressive
trigger settings (25-30 Watts) begin to show
modest performance impact. 50W is the max
power for the modeled chip.

ing to be reduced considerably. In this design, the maximum
power was around 50W; with DTM this could be easily re-
duced to 35-40W.

A more aggressive design would set the trigger some-
where around 25W for these applications. Being more ag-
gressive in the trigger setting allows for more significant
packaging savings, about $1 per watt per CPU chip. But
this savings may come at the price of reduced performance
for some applications. Thus, a key goal of this paper is
to propose streamlined mechanisms for DTM that offer the
best possible performance.

*- intensive 115, 1
0 4 I

fscale 10- fscale 10- fscale 10- fscale 10- fscale 10-
20.0 22.0 24.0 26.0 28.0

Figure 6. Performance Loss at various trigger
levels for the fscalelO response technique.

Now we consider the effect of the trigger value with our
standard (including all delays) f sca le l0 technique. Figures
6 and 7 show the effects of varying the trigger level for the
f s c a l e l 0 technique. Each data point shows the performance
and number of thermal emergencies relative to the baseline
configuration without DTM at the specified trigger level;
the level that we consider to be an emergency is always set
to be 1 W above the trigger level. From Figure 6 we can see

178

Authorized licensed use limited to: University of Illinois. Downloaded on August 24,2021 at 15:26:24 UTC from IEEE Xplore. Restrictions apply.

\ o 0.9 *
3 0.8

'3 L. 0 , .
2 % 2 .? 0.6 -
.- 0 5 -
8 ? 0 4 - E.$ 0 3 -

+intensive I
'\ '\ - QPPP
', '\

'\ g j 0 2 -
m m 0 1 -

0 t- ('a----- 1 , - -
fscalel0- fscalel0- fscalel0- fscalel0- fscalel0-

20.0 22.0 24.0 26.0 28.0

Figure 7. Emergency Reduction at various
trigger levels for the fscalelO response tech-
nique.

that for the set of mild and intensive benchmarks, perfor-
mance degrades further as we set more aggressive trigger
levels. However, from Figure 7 we see that the machine
does not exceed the thermal emergency threshold until we
reach a trigger of 20W. Fpppp performs quite differently
- at trigger levels between 20-24W, the number of thermal
emergencies has not been reduced at all; thefscalelO policy
is continuously engaged leading to a constant 10% perfor-
mance penalty. However, at 26W and 28W thefscalelO pol-
icy begins to be effective. At the 26W trigger level there is
a corresponding drop in performance as we start to see the
effect of the trigger being engaged and disengaged during
execution. At 28W and upwards, this performance penalty
diminishes.

We have seen similar patterns with the other voltage and
frequency scaling techniques as well as with the microar-
chitectural techniques. Overall, we see that the choice of
the trigger level is an important lever for system designers
to use when deciding whether to trade off performance for
some of the most extreme benchmarks such asfpppp against
the amount of cooling hardware to build into the system.

6 Dynamic Thermal Management: Initiation
Mechanisms

In Section 5 we consider a variety of dynamic response
mechanisms. In that section, we assume an implementation
where the operating system calls an interrupt handler to in-
voke the dynamic response mechanism which incurs signif-
icant overhead. To mitigate this overhead, we consider two
modifications to the initiation mechanism of DTM. First, we
consider additional hardware support in the microarchitec-
ture to remove the interrupt overhead. Second, we modified
the policy delay to allow the response mechanism to remain
engaged for longer periods of time, better amortizing the
cost of the trigger's response delay over the program run.

6.1 Hardware Support for Initiating Responses

Eliminating interrupt call overhead is the obvious ben-
efit from additional hardware support. However, avoiding
interrupt handling also allows more fine-grained control of
the response scheme. This reduces the performance over-
head of DTM because the performance-limiting response
will only be engaged when it is needed. Finally, more fine-
grained control of the response mechanism could have a
benefit on reducing the number of cycles with thermal emer-
gencies, because the mechanism will be engaged faster.

To eliminate the trigger overhead, the trigger mecha-
nism must be directly integrated into the microarchitecture.
For example, the temperature sensor or hardware activity
counter could generate a signal indicating that the trigger
limit has been exceeded and this signal could be sent to
microarchitectural state machines which would engage the
trigger. The operating system would only need to program
internal registers at the beginning of the application's exe-
cution to adjust the amount of throttling that the response
should use. To evaluate the effects of this additional hard-
ware we have simulated the microarchitectural response
techniques with a 0-cycle initiation delay; this assumes that
the 250-cycle interrupt overhead can be removed.

toggle2
Uunresl

Figure 8. Reduction in performance com-
pared to baseline.

Figure 8 shows the results for the microarchitectural re-
sponse mechanisms assuming that the trigger mechanism
is integrated into the microarchitecture. The reduction in
number of thermal emergencies is unchanged. However,
there was a reduction in performance penalty. For the
mildly intensive four benchmarks, the performance penalty
was on average 5%; this compares to a 7% performance hit
without the hardware support. For the next group of four
benchmarks with more intensive thermal demands, the per-
formance reduction was 13% compared to 16% with OS
overhead. Sincefpppp spends a large amount of time with
the triggers engaged, speeding up the interrupt overhead had
a small effect on the performance using this scheme.

179

Authorized licensed use limited to: University of Illinois. Downloaded on August 24,2021 at 15:26:24 UTC from IEEE Xplore. Restrictions apply.

6.2 Policy and Thermal Window Effects on Volt-
agemrequency Scaling

2 0.9 -

.2 a 0.7 -

2 0.6 -

8 4 0.5 -

5 > 0.4 -
0.3 -

0.1-

; z 0.8 -

-

% f 0.2

In the previous section, we considered the use of hard-
ware support to reduce the overhead of initiating the re-
sponse mechanism. This overhead is even larger for the
voltage and frequency scaling techniques. The majority of
the time required to initiate these techniques is spent scal-
ing the frequency and internal voltage of the processor to a
new level. Since this overhead is not related to the operating
system, reducing the interrupt time will only have a small
effect on performance. In this section we consider two tech-
niques to reduce this delay. First, we consider increasing
the policy delay, or the amount of time that the mechanism
is enabled before it is eligible to be disabled. Increasing
the policy delay allows the response and shutoff overhead
to be amortized over a larger portion of the run. On the
other hand, if the policy delay is too long, the response will
be engaged during unnecessary stretches of program exe-
cution. The second technique we consider is using a larger
thermal window to estimate the temperature of the chip. For
all of the previous results, we have used a window of 10K
cycles. In this section, we consider increasing this window
to be IOOK cycles. This has the effect of smoothing out
short thermal spikes which could unnecessarily cause the
response to be triggered. For the more coarse-grained fre-
quency and voltage scaling techniques, we would like to
minimize these situations.

1 1

o t

+mild
--t intensive

p d - 1 5 1 ~ pd-401~ Pd-lOOU pd-100IE-
chunkl0Ok

Figure 9. Reduction in performance com-
pared to baseline.

We consider varying the policy delay with values of
15 microseconds, 40 microseconds, and 100 microseconds.
We have chosen 40 microseconds because it is the combined
response and shutoff delays of frequency+voltage scaling
response mechanism. Finally, we show the effect of increas-
ing the thermal window from 10K cycles to IOOK cycles
with a policy delay of 100 microseconds. Figure 9 shows
the the performance effect of the techniques when using the
vfscale30. In this figure, the first three data points report
the performance relative to the baseline while varying the

policy delay; the final point shows the performance as the
thermal window is increased to lOOK cycles.

From this Figure 9 we see that there was very little effect
on performance for the mild and intensive benchmark suite;
in fact, there was a slight degradation in performance as we
increase the policy delay. This is because although the ini-
tiation overhead was decreased, the amount of time spent
with frequency and voltage scaling engaged increased. On
the other hand, fpppp had a substantial performance im-
provement with increased policy delay. For this benchmark,
the performance loss to the baseline decreased from 60%
with 15 microsecond policy delay to 44% with 100 mi-
crosecond policy delay. Finally, we see that increasing the
thermal window had a positive effect on all three classes of
applications. When moving from the 10K cycle window to
the IOOK cycle window the performance loss decreased to
34% forfpppp.

For the benchmarks with intensive thermal demands, the
performance loss decreased to 20%. On the other hand, we
found that increasing the size of the thermal window had a
much smaller (1-2%) performance benefit for the microar-
chitecural techniques. Since these techniques are much
more fine-grained in nature, they suffer less from shorter
thermal transients.

We have found that the initiation mechanism is a key
factor to the performance degradation of DTM. We have
investigated two techniques which show promise for reduc-
ing the performance overhead. Future work could address
additional techniques to reduce this overhead either through
more efficient methods to initiate the responses or smarter
techniques to enable and disable responses.

7 Method for Identifying DTM Responses

In this work we have compared the benefits of dynamic
thermal management via several microarchitectural tech-
niques as well as clock frequency and voltage scaling. In
considering other schemes for thermal management, we
would like to develop a more systematic approach to iden-
tifying potential techniques.

We propose here a method based on correlation. That
is, we wish to find levers that reduce power with a less-
than-proportional reduction in performance. We have per-
formed simulations using Wattch to correlate power dis-
sipation with other processor statistics such as instruction
fetch rate, branch prediction accuracy, data and instruction
cache hit rates, execution bandwidth, and IPC. We use this
method to isolate certain processor statistics which track
more closely with power than with IPC.

We collected the average power and performance statis-
tical data for fixed chunks of 10,000 cycles. These statistics
were then correlated with each other after the simulation
completed. An example of the correlation data for the av-
erage of our benchmark suite is shown in Table 3. The first

180

Authorized licensed use limited to: University of Illinois. Downloaded on August 24,2021 at 15:26:24 UTC from IEEE Xplore. Restrictions apply.

I Correlation I Fetch I BPred I DC Hit I IC Hit I Exec I On other other hand, cache hit rates and instruction fetch

Power VS.

IPC vs.

Rate Rate Rate Rate BW bandwidth correlated more with power than with IPC for
0.82 0.37 0.40 0.50 0.83 many of the benchmarks. Execution bandwidth correlates
0.77 O A 1 0.25 more with power than with IPC for four of the benchmarks.

Table 3. Correlation Data for Average of
Benchmarks

gling and speculation control as methods for dynamic ther-
mal management. We plan future work that will broaden
the types of microarchitectural response mechanisms that
we investigate with correlation analysis.

line of this table shows the correlation between processor
power dissipation and instruction fetch rate (avg. number 8 Conclusion
of instructions fetched per cycle), branch prediction accu-
racy, cache hit rates, and execution bandwidth (committed
+ mis-speculated instructions/cycle). As expected, Power
correlates very strongly with execution bandwidth. Instruc-
tion fetch bandwidth correlates also correlates strongly with
power. Branch direction prediction accuracy, a secondary
indicator of application performance, also correlates with
power but to a lesser degree. Data and instruction-cache hit
rates correlate slightly more than branch predictor accuracy
with power.

The second line of Table 3 shows the correlation between
IPC and the processor statistics. From this table, we see
execution bandwidth, branch predictor accuracy, and fetch
bandwidth correlate the most with performance.

We have proposed and evaluated the benefits of using
dynamic thermal management to reduce the cooling system
costs of cpUs. F~~~ this initial research effort, we have
drawn several conc~usions which we feel can help guide fu-
ture research in this area.

0 Trigger Selection: Dynamic thermal management al-
lows arbitrary tradeoffs between performance and sav-
ings in cooling hardware. Conservative target selec-
tions can still lead to significant cost improvements
with essentially zero performance impact, because the
trigger point is rarely reached for many applications.

0 Designers Can Focus on Average Power: In addi-
1 H fetchprate tion, DTM makes other techniques targeting average

power more interesting to the designers of high-end
CPUs. Effective DTM makes average power the met-

8 0.6

2 0.4 packages need no longer be designed for worst-case
p 0.2 power. With DTM, lowering average CPU power will
.s 0 reduce the trigger value needed for a particular level of

performance, and thus will reduce packaging costs. 6 -0.2

-0 6

-0.8 ’

bpred-dir
Odcache-hit
Wicache-fut
U exec-bw

0.8

E ric of interest even for high-end CPU designers, since

g
E

rJ -
0

0 Trigger Activation Time is Significant: Not unex-
pectedly, the triggering delay is a key factor in the
performance overhead of DTM. We have found that
more fine-grained control of the trigger mechanism is
especially important in the context that we consider:
reducing thermal traumas in high-performance CPUs.
Unfortunately, our data show that some of the most
promising techniques in DTM today, such as voltage
or frequency scaling, are typically implemented with
very high activation delays. These lead to significant
performance overheads across most applications.

-0.4

Figure 10. Correlation between power and
several performance statistics.

Figure 10 plots power correlation minus IPC correlation
for each point for the individual benchmarks. Thus, a pos-
itive data point in this graph corresponds to a case where
power dissipation is more strongly correlated with the met-
ric (eg fetch rate) than IPC is. Looking for possible DTM
responses with strong power correlations lets us seek out
“wasted work“ that may lead to good power reductions with 0 Lightweight Policies Are Effective: More
minimal performance impact. This may reveal strategies lightweight, fine-grained policies, such as the
that would be most useful for dynamic thermal manage- microarchitectural techniques we have discussed,
ment. often allows the temperature to stay close to the target

This data reveals some interesting trends. For example, level with a small performance penalty. In addition,
for almost all of the benchmarks, branch predictor accuracy the fine-grained policies are less affected by rapid
correlated much more with performance than with power. fluctuations in the temperature.

181

Authorized licensed use limited to: University of Illinois. Downloaded on August 24,2021 at 15:26:24 UTC from IEEE Xplore. Restrictions apply.

0 Methodology for Identification of Future Tech-
niques: Because of these growing opportunities for
microarchitectural DTM techniques, we have also pro-
posed a methodology for evaluating new DTM ap-
proaches. This mechanism correlates power and per-
formance, and looks for “low-hanging fruit”; that is,
our correlators look for techniques that can cut power
by significantly more than they hurt performance.
Identifying these sorts of wasted work, particularly on
an application-specific basis, appears to be a promis-
ing way of discovering new microarchitectural DTM
techniques in the future.

9 Acknowledgement

This research was supported in part by an NSF ITR
grant, a donation from Intel, and an IBM University Part-
nership award. In addition, David Brooks is supported by
an NSF Graduate Research Fellowship and a Princeton Uni-
versity Gordon Wu Fellowship.

References

Advanced Configuration and Power Interface.
http://www.teleport.com/ acpi/.
S. Borkar. Design Challenges of Technology Scaling. IEEE
Micro, July-August 1999.

D. Brooks and M. Martonosi. Dynamically exploiting nar-
row width operands to improve processor power and perfor-
mance. In Proc. of the 5th Int’I Symp. on High-Performance
Computer Architecture, Jan. 1999.

D. Brooks and M. Martonosi. Adaptive thermal manage-
ment for high-performance microprocessors. In Workshop
on Complexity Effective Design 2000 at ISCA27, June 2000.

D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A frame-
work for architectural-level power analysis and optimiza-
tions. In Proceedings of the 27th Annual International Sym-
posium on Computer Architecture, June 2000.

T. Burd, T. Pering, A. Stratkos, and R. Brodersen. A dynamic
voltage scaled microprocessor system. In ISSCC Digest of
Technical Papers, pages 294-295, 2000.

D. Burger and T. M. Austin. The SimpleScalar Tool Set,
Version 2.0. Computer Architecture News, pages 13-25, June
1997.

C. Georgiou and S. Kirkpatrick and T. Larson. Variable
Chip-clocking Mechanism. US Patent 5,189,314, 1993.

S. Ghiasi, J. Casmira, and D. Grunwald. Using IPC variation
in workloads with externally specified rates to reduce power
consumption. In Complexity-Effective Design at ISCA27,
June 2000.

M. Gowan, L. Biro, and D. Jackson. Power considerations
in the design of the Alpha 21264 microprocessor. In 35th
Design Automation Conference, 1998.

D. Grunwald, A. Klauser, S. Manne, and A. Pleszkun. Confi-
dence estimation for speculation control. In Proc. of the 25th
Int’l Symp. on Computer Architecture, pages 122-31, June
1998.
L. Gwennap. Power issues may limit future CPUs. Micro-
processor Report, August 1996.
W. Huang, J. Renau, S.-M. Yoo, and J. Tomellas. A frame-
work for dynamic energy efficiency and temperature man-
agement. In Proc. of the 33rd Int’l Symp. on Microarchitec-
ture, Dec. 2000.
Marc Fleischmann. Crusoe Power Management: Cutting x86
Operating Power Through LongRun. Embedded Processor
Forum, June 2000.
J. Montanaro et al. A 160-MHz. 32-b, 0.5W CMOS RISC
microprocessor. Digital Technical Journal, 9(2):49-62,
1996.
0. Ikeda. Power Saving Control System for a Computer Sys-
tem. US Patent 5,504,908, 1996.
T. Pering, T. Burd, and R. Brodersen. The simulation and
evaluation of dynamic voltage scaling algorithms. In Pro-
ceedings of International Symposium on Low Power Elec-
tronics and Design, August 1998.
Prof. Matt Krane. Materials Science Department, Purdue
University. Thermal Packaging Models. Personal commu-
nication, Dec. 1999.
P. Reed et al. 250 MHz 5W RISC microprocessor with on-
chip L2 cache controller. Digest of Technical Papers - IEEE
International Solid-State Circuits Conference, 40:412, 1997.
E. Rohou and M. Smith. Dynamically managing proces-
sor temperature and power. In 2nd Workshop on Feedback-
Directed Optimization, Nov. 1999.
H. Sanchez et al. Thermal management system for high
performance powerpc microprocessors. Digest of Papers -
COMPCON - IEEE Computer Society International Confer-
ence, page 325, 1997.
J. Seng, D. Tullsen, and G. Cai. Power-sensitive multi-
threaded architecture. In Intemational Conference on Com-
puter Design 2000, Sep. 2000.
V. Tiwari et al. Reducing power in high-performance micro-
processors. In 35th Design Automation Conference, 1998.
Transmeta Corp. The Technology Behind the Crusoe Pro-
cessor Whitepaper, 2000.

182

Authorized licensed use limited to: University of Illinois. Downloaded on August 24,2021 at 15:26:24 UTC from IEEE Xplore. Restrictions apply.

http://www.teleport.com

