
Appears in the 20th International Symposium on High Performance Computer Architecture (HPCA)

Orlando, Florida, February 17-19, 2014

1

Scalably Verifiable Dynamic Power Management

Opeoluwa Matthews, Meng Zhang, and Daniel J. Sorin

Department of Electrical and Computer Engineering

Duke University

Abstract

Dynamic power management (DPM) is critical to

maximizing the performance of systems ranging from

multicore processors to datacenters. However, one

formidable challenge with DPM schemes is verifying that the

DPM schemes are correct as the number of computational

resources scales up. In this paper, we develop a DPM

scheme such that it is scalably verifiable with fully automated

formal tools. The key to the design is that the DPM scheme

has fractal behavior; that is, it behaves the same at every

scale. We show that the fractal design enables scalable

formal verification and simulation shows that our scheme

does not sacrifice much performance compared to an oracle

DPM scheme that optimally allocates power to

computational resources. We implement our scheme in a

2-socket 16-core x86 system and experimentally evaluate it.

1 Introduction
For the computer systems of today and tomorrow, the

limiting constraint is power. Computer architects strive to

achieve the greatest possible performance within a given

power budget. One way in which computers maximize their

power-efficiency (performance per watt) is through the use

of dynamic power management (DPM). At runtime,

computers dynamically re-allocate power to hardware

resources. DPM may involve dynamic voltage and/or

dynamic frequency scaling, dynamic power gating, dynamic

clock gating, etc. DPM is performed at many

granularities—among cores on a multicore processor chip

and among processors within a datacenter—although the

DPM schemes at each level may vary.

Designing an effective DPM scheme is challenging, and

this challenge is exacerbated by the increasing scale of

computer systems. Multicore processors contain increasing

numbers of cores, and datacenters contain increasing

numbers of processors. With more hardware resources to

which to allocate power, the DPM algorithm has many more

options for how to allocate power. For a DPM scheme to be

useful, it must be scalable to large-scale systems.

DPM is a well-studied field with many published

techniques [10][8][6], but one major concern with

implementing a DPM scheme is verifying that the scheme

behaves correctly in all possible situations. Furthermore, as

system sizes grow, verification becomes more difficult.

DPM protocols are similar to cache coherence protocols in

their complexity and in the difficulty of verifying them

correct. Verification is critical, because a bug in a DPM

scheme can lead to a chip or a rack that overheats and

damages itself or to a system that is far less power-efficient

than it could be. However, there is currently no automated

way to verify that a DPM scheme is correct for an arbitrary

number of computing resources. The only prior approach is

to divide a multicore processor into small groups of cores

(e.g., 3 cores per group) and verify that each group manages

its own power correctly [9].

In this paper, we develop a new DPM scheme that we

design specifically to be scalably verifiable with fully

automated formal verification tools. Our approach creates a

DPM scheme that is hierarchical and, more importantly,

fractal, i.e., has the same behavior at every level. We

leverage the fractal nature of the DPM scheme to enable an

inductive proof that the scheme is correct for any number of

computing resources (i.e., for any number of levels of

hierarchy). Our DPM scheme borrows the fractal idea from a

recent paper in cache coherence [14] and adapts and extends

it to the new context of dynamic power management. To the

best of our knowledge, our fractal DPM scheme is the first

DPM scheme that is scalably verifiable with fully automated

formal tools.

In this paper, we first present our system model (Section 2)

and explain why it is difficult to verify DPM schemes for this

model (Section 3). Motivated by the verification challenge,

we present our fractal DPM scheme (Section 4) and show

how we can verify it at any scale (Section 5). We explain

how the fractal DPM potentially sacrifices performance in

order to maintain its fractal behavior (Section 6) and evaluate

an abstract system to show there are no fundamental

performance limitations (Section 7). We then describe our

software implementation of the fractal DPM scheme on a real

x86 system with 16 cores (Section 8) and experimentally

evaluate it (Section 9). Lastly, we compare fractal DPM to

prior work (Section 10) and conclude (Section 11).

2 System Model
We assume a system with an arbitrary number of

computing resources, C. These computing resources can be

cores or multicore processors, and we intentionally treat them

abstractly to highlight the generality of our approach. (In our

implementation that we present later in the paper, each

computing resource is a pair of cores.) The computing

resources are homogeneous in how they interact with DPM

but can otherwise be heterogeneous. Each computing

resource Ci individually and dynamically requests power that

is directly proportional to Xmaxi, where Xmaxi is the current

performance of computing resource Ci if Ci is allocated its

maximum possible power.

2

2.1 DPM Model

The DPM scheme dynamically assigns to each computing

resource Ci a power allocation, Pi. A computing resource’s

performance, Xi, is a function of its power allocation and its

unconstrained performance at that time, Xmaxi. That is, Xi =

f(Pi, Xmaxi). Later in this paper, we explore specific

performance functions, but we intentionally keep this

function abstract for now.

The goal of the DPM scheme is to allocate a fixed

system-wide power budget, B, to the computing resources, in

response to their requests, so as to maximize the performance

of the system. That is, the DPM scheme seeks to maximize

ΣXi under the constraint that ΣPi < B.

2.2 Power and Performance Model

Without loss of generality, we assume that there are five

possible power settings for each computing resource: Low

(L), Medium-Low (ML), Medium (M), Medium-High (MH),

and High (H). These power settings can correspond to

different voltage/frequency settings, different power gating

settings, etc. For example, setting a processor core to the

Low power setting could mean setting the core to a

low-voltage and low-frequency or it could mean powering

down the core. The mapping from abstract power states to

concrete configurations of computing resources is orthogonal

to our work.

We further assume that each computing resource’s Xmaxi

has five possible values, also labeled L, ML, M, MH, and H.

A computing resource will thus request a power setting equal

to its Xmaxi.

3 Verification Scalability Problem
As computer architects, we seek to design our DPM

scheme to “fit” existing tools rather than attempt to develop

new tools. In this work, we focus only on fully automated

formal verification methodologies. We do not consider

informal simulation-based validation (i.e., simulating

extensively to try to uncover design bugs), because it is

fundamentally incomplete (i.e., cannot find all bugs). We

also do not consider formal verification methodologies such

as theorem proving [12] and parametric verification [3], both

of which are scalable but require substantial manual effort

from verification experts.

For our automated tool, we choose the well-known

Murφ [5] model checker. A model checker exhaustively

searches the reachable state space of a design and checks that

specified invariants are maintained in every possible

reachable state.

Model checking is an exhaustive technique for verification

but it suffers from the well-known state space explosion

problem. Exhaustively searching the state space of a

non-trivial system is generally infeasible. Consider our

system with DPM. If each computing resource can be in one

of five states, then the number of states in the system is on the

order of 5
C
. Clearly, there is some value of C beyond which

the state space exceeds the capability of the model checker.

 One typical approach to this state space explosion

problem is to model check a small-scale instance of the

desired system. For example, one might model check a

system with three computing resources, because that is the

limit of the state space that can be explored. However, model

checking a system with three computing resources does not,

in general, ensure that systems with more computing

resources are correct.

Our goal in this work is to design a DPM scheme that we

can verify for any arbitrary number of computing resources.

4 Fractal DPM Design
Given the state space explosion problem, our strategy for a

scalably verifiable DPM scheme is to design it such that we

can leverage the power of induction. The key insight is that a

fractal design—a design in which the system behaves the

same at every scale—enables an inductive verification. We

need to verify two aspects of the design. First, we must

verify that the base case of the induction, the smallest scale of

the system, is correct (i.e., never exceeds its power budget).

Second, we must verify the inductive step, i.e., that the

Table 1. Averaging Power Settings of Children. Bracketed

entries are symmetric (e.g., L:ML and ML:L).

Node

Power

Possible Power Settings of Children

L L:L

ML {L:ML, ML:L}, {L:M,M:L}, ML:ML

M {L:MH, MH:L}, {L:H, H:L}, {ML:M, M:ML},

{ML:MH, MH:ML}, M:M

MH {M:MH, MH:M},{ML:H,H:ML},{M:H,H:M} MH:MH

H {MH:H, H:MH}, H:H

Table 2. Notation for Describing DPM Actions

label action

a send request for L (ReqL) request to parent

b send request for ML (ReqML) request to parent

c send request for M (ReqM) request to parent

d send request for MH (ReqMH) request to parent

e send request for H (ReqH) request to parent

f send GrantPowerReq response to left child

g send DenyPowerReq response to left child

h send Ack to parent

z stall request

Figure 1. DPM scheme with 3 computing resources

3

design is indeed fractal. Critically, both of these verification

steps are fully automated with Murφ. We defer a discussion

of the actual verification until Section 5, but we have outlined

it here to provide intuition for our design.

4.1 Fractal System Organization

In Figure 1, we illustrate the smallest scale system, which

has three computing resources. Our fractal systems are

hierarchical, based on a binary tree organization. The leaves

of the tree are the computing resources, and the intermediate

nodes are DPM controllers. Each DPM controller is a simple

finite state machine that records the power states of its

children as well as some state regarding in-flight requests for

power.

Each computing resource can request a new power setting

by sending a request to its parent DPM controller.

Depending on the request and its current state, the DPM

controller either responds directly to the computing resource

or sends a request to its parent DPM controller.

Because of the fractal design of the DPM scheme, we often

reason about a DPM controller with its two children as a

single “node” that behaves like a single computing resource.

If the two children are at different power settings, we average

them (and round up) to obtain the power setting of the node.

The averaging/rounding process is listed in Table 1, where

we denote the power settings of the children in the form X:Y,

where X and Y are the power settings of the left and right

child, respectively. For example, state L:M denotes that the

left child is in state L and the right child is in state M.

4.2 Maintaining Fractal Power Invariants

To be fractal, our DPM scheme’s behavior must be fractal

(described next in Section 4.3) and the invariants it maintains

must be fractal. For example, we cannot specify as an

invariant that the average power of all computational

resources on the chip is a given power level (e.g., MH). An

invariant must be applicable at all scales of the system, not

just when considering the system as a whole. This need for

fractal invariants distinguishes our DPM scheme from all

prior DPM schemes of which we are aware. The fractal

invariant we specify here for DPM also distinguishes this

work from Fractal Coherence [14] because the coherence

invariant is naturally fractal and power invariants are not.

The specific fractal invariant we choose is:

This invariant is useful for a system that has a power

budget less than what would be drawn by all of its computing

resources if they were all operating at their highest power

setting. Such a system could be a multicore processor or a

datacenter. As a concrete example, an Intel multicore

processor with TurboBoost cannot let all of its cores operate

at the highest power setting (in fact, only one core can be at

the TurboBoost setting).

By maintaining this fractal invariant at every level, the

DPM scheme limits system-wide power consumption. In

Section 6, we analyze the relationship between our fractal

invariant and system-wide power consumption and show

that, as a result of this fractal invariant, the average power

consumption of all computing resources asymptotically

approaches a maximum of MH. For example, consider an

8-core chip with an 80W chip-wide power budget. If we

equate a core at MH with a 10W per-core power budget, then

our DPM scheme is provably guaranteed to enforce the

chip-wide power budget. If we instead have a datacenter

with 10,000 nodes and a 1MW power budget, then we would

equate MH with a 100W per-node power budget.

We could have chosen another fractal invariant, such as

“both children are never at H or MH at the same time” or “the

average power of both children is never more than MH”, etc.

Whatever fractal invariant we choose requires us to analyze

the relationship between this fractal invariant and chip-wide

power consumption, as we do for the invariant in this paper.

Future work will explore other fractal invariants, but we do

not believe that the choice of fractal invariant qualitatively

affects the contributions or conclusions of our work.

4.3 Fractal DPM Scheme Specification

In this section, we precisely specify the behaviors of the

computing resources and the DPM controllers. We use a

table-based specification methodology [13] to specify these

finite state machines. The rows of a table correspond to

states, and the columns correspond to events. Each entry in

the table corresponds to a state/event combination, and the

entry specifies what happens in that situation. An entry has

the form Actions/NextState. To keep the tables concise, we

denote actions using a shorthand notation shown in Table 2.

For example, a table entry of the form “d/MH” would denote

that the finite state machine sends a request for MH (ReqMH)

to its parent DPM controller and then changes its state to MH.

A shaded entry in the table denotes that this entry is

impossible; the given event cannot occur in the given state.

An entry with “--“ denotes that no action or state change

occurs. There are some states and transitions that are required

Table 3. Specification of Behavior of Computational Resource

 Xmaxi Demand Responses from Parent Controller

State L ML M MH H GrantReq DenyReq

L -- b/pend-ML c/pend-M d/pend-MH e/pend-H

ML a/pend-L -- c/pend-M d/pend-MH e/pend-H

M a/pend-L b/pend-ML -- d/pend-MH e/pend-H

MH a/pend-L b/pend-ML c/pend-M -- e/pend-H

H a/pend-L b/pend-ML c/pend-M d/pend-MH --

pend-* z z z z z h/requested state h/previous state

Fractal Invariant: It is impossible for both children of a

DPM controller to be at the High power setting at the

same time.

4

to maintain fractal behavior, and they are in bold text in the

tables.

4.3.1 Computing Resource Specification

In Table 3, we specify the behavior of each computing

resource. The rows of the table are the states of the finite

state machine, i.e., possible power settings. One state is

labeled “pend-*”, which is shorthand for a family of pending

states in which the computing resource has requested a new

power state and is waiting for a response. For example,

pend-L denotes waiting for Low power. The columns

correspond to events that are either changes in demand

(Xmaxi) from the computing resource or responses from the

parent DPM controller.

The power management behavior of a computing resource

is fairly simple. It responds to changes in demand by issuing

requests for changes in power. It changes its power based on

responses from its parent DPM controller.

4.3.2 DPM Controller Specification

We specify the behavior of each non-root DPM controller in

Table 4, and we specify the behavior of the root DPM

controller in Table 5. The specifications differ in that the root

DPM controller has no interactions with a parent. The state

names are of the form X:Y (Z), where X and Y are the power

settings of the left and right children, respectively, and Z is

the average power of the two children. The DPM controllers

have two state names that are shorthand for families of states:

pend-* and block-*. The block-* state family includes states

such as block-L:ML, in which the DPM controller granted or

denied a request to a child and is blocked waiting on the Ack

from the child and will then go to state L:ML.

The tables are admittedly dense and likely hard to read, but

our goal is to show a complete specification and to reveal that

the entire finite state machine is not terribly complicated (i.e.,

fits on a dense page). The reader does not need to walk

through each entry of each table but rather is encouraged to

skim some entries to get a feel for how the protocol works. In

an effort at conciseness, we include in the tables only the

requests from the left child and responses to requests from

the left child; the behavior with respect to the right child is

identical.

The power management behavior of the DPM controllers

is significantly more complicated than that of the computing

resources. Notably, the non-root DPM controller must query

Table 4. Specification of Behavior of Non-Root DPM Controller

Bolded entries show states/situations that are specially required to maintain fractal behavior.

 Messages from Left Child

(messages from right child are symmetric)

Messages from

Parent

(for requests from

left child) O
p

ti
o

n
a

l

State ReqL ReqML ReqM ReqMH ReqH Ack GrantReq DenyReq

L:L (L) b/pend-ML:L b/pend-M:L c/pend-MH:L c/pend-H:L

L:ML (ML) f/block-ML:ML c/pend-M:ML c/pend-MH:ML d/pend-H:ML

L:M (ML) c/pend-ML:M c/pend-M:M d/pend-MH:M d/pend-H:M

L:MH (M) c/pend-ML:MH d/pend-M:MH d/pend-MH:MH e/pend-H:MH

L:H (M) d/pend-ML:H d/pend-M:H e/pend-MH:H g/block-L:H --/X:HF

X:HF (M) d/pend-ML:H d/pend-M:H g/block-X:HF g/block-X:HF --/L:H

ML:L (ML) a/pend-L:L f/block-M:L c/pend-MH:L c/pend-H:L

ML:ML (ML) f/block-L:ML c/pend-M:ML c/pend-MH:ML d/pend-H:ML

ML:M (M) b/pend-L:M f/block-M:M d/pend-MH:M d/pend-H:M

ML:MH (M) f/block-L:MH d/pend-M:MH d/pend-MH:MH e/pend-H:MH

ML:H (MH) c/pend-L:H f/block-M:H e/pend-MH:H g/block-ML:H

M:L (ML) a/pend-L:L f/block-ML:L c/pend-MH:L c/pend-H:L

M:ML (M) b/pend-L:ML b/pend-ML:ML f/block-MH:ML d/pend-H:ML

M:M (M) b/pend-L:M f/block-ML:M d/pend-MH:MH d/pend-H:M

M:MH (MH) c/pend-L:MH c/pend-ML:MH f/block-MH:MH e/pend-H:MH

M:H (MH) c/pend-L:H f/block-ML:H e/pend-MH:H g/block-M:H

MH:L (M) a/pend-L:L b/pend-ML:L b/pend-M:L f/block-H:L

MH:ML (M) b/pend-L:ML b/pend-ML:ML f/block-M:ML d/pend-H:ML

MH:M (MH) b/pend-L:M c/pend-ML:M c/pend-M:M f/block-H:MH

MH:MH (MH) c/pend-L:MH c/pend-ML:MH f/block-M:MH e/pend-H:MH

MH:H (H) c/pend-L:H d/pend-ML:H d/pend-M:H g/block-MH:H

H:L (M) a/pend-L:L b/pend-ML:L b/pend-M:L f/block-MH:L

H:ML (MH) b/pend-L:ML b/pend-ML:ML c/pend-M:ML c/pend-MH:ML

H:M (MH) b/pend-L:M c/pend-ML:M c/pend-M:M f/block-MH:M

H:MH (H) c/pend-L:MH c/pend-ML:MH d/pend-M:MH d/pend-MH:MH

pend-* z z z z z fh/block* gh/block*

block-* z z z z z --/requested state

5

its parent DPM controller whenever a requested power

setting change would change the node’s state. For example,

consider the case in which the DPM controller’s state is L:L

and the left child requests High power. Granting the left

child High power would change the node’s state from L to M

(because H:L averages to M), and this change must be

requested from the parent DPM controller. To maintain

fractal behavior, the node must behave like a single

computing resource, which would similarly issue a request to

change its state from L to M.

The non-root DPM controller either satisfies the request

directly (if doing so does not change the node’s state) or

passes along the appropriate request to its parent DPM, with

only four exceptions. These four exceptions are situations in

which satisfying the request would violate our invariant (i.e.,

both children cannot be in state H). These four exceptions

are requests for High power when the other child is already in

state H. In these situations, the DPM controller denies the

request.
1

One unusual state (X:H
F
) and its usage is required for

verification purposes. We refer readers interested in this

subtle issue to Appendix A.

4.4 Design Scalability

For purposes of verification, our DPM scheme is

arbitrarily scalable. For purposes of performance, there are

1 A more efficient solution would treat the request for H as a request for

MH, but we sacrificed that optimization for simplicity.

possible scalability issues due to its structure. With a binary

tree organization and many computing resources, a request

that must be communicated to an upper level of the tree

requires many hops and a potentially long latency. A

higher-degree tree would mitigate this problem, but the

verification tools we use are incapable of verifying the

smallest scale DPM scheme with a higher-degree tree.

Despite the binary tree structure, there are three reasons

why scalability is not a major concern. First and foremost,

the latency of DPM itself is not critical. The computing

resources continue to execute while waiting on outstanding

DPM requests. Second, many requests can be satisfied

without traveling far up the tree. Third, our experimental

results on a real system (Section 9.4) show that, at least for a

modestly sized system (16 computing resources), latencies

are reasonable.

5 Verification of Fractal DPM
The motivation for our DPM scheme is to enable scalable

verification. That is, we can scale the verification to any

arbitrary number of computing resources, and the effort to

verify the DPM scheme is independent of the number of

computing resources.

In this section, we show the inductive verification process

of our DPM scheme, which is based on a one-time proof that

the induction is complete (Section 5.1). The verification

process includes two steps:

1. Base case: Verify that the minimum system satisfies its

power constraints (Section 5.2).

Table 5. Specification of Behavior of Root DPM Controller.

 Bolded entries show states/situations that are specially required to maintain fractal.

 Requests from Left Child

(requests from right child handled symmetrically)

Ack from Left

Child
Optional

State ReqL ReqML ReqM ReqMH ReqH

L:L (L) f/block-ML:L f/block-M:L f/block-MH:L f/block-H:L

L:ML (ML) f/block-ML:ML f/block-M:ML f/block-MH:ML f/block-H:ML

L:M (ML) f/block-ML:M f/block-M:M f/block-MH:M f/block-H:M

L:MH (M) f/block-ML:MH f/block-M:MH f/block-MH:MH f/block-H:MH

L:H (M) f/block-ML:H f/block-M:H f/block-MH:H g/block-L:H --/X:HF

X:HF (M) f/block-ML:H f/block-M:H g/block-X:HF g/block-X:HF --/L:H

ML:L (ML) f/block-L:ML f/block-M:L f/block-MH:L f/block-H:L

ML:ML (ML) f/block-L:ML f/block-M:ML f/block-MH:ML f/block-H:ML

ML:M (M) f/block-L:M f/block-M:M f/block-MH:M f/block-H:M

ML:MH (M) f/block-L:MH f/block-M:MH f/block-MH:MH f/block-H:MH

ML:H (MH) f/block-L:H f/block-M:H f/block-MH:H g/block-ML:H

M:L (ML) f/block-L:ML f/block-ML:L f/block-MH:L f/block-H:L

M:ML (M) f/block-L:ML f/block-ML:ML f/block-MH:ML f/block-H:ML

M:M (M) f/block-L:M f/block-ML:M f/block-MH:M f/block-H:M

M:MH (MH) f/block-L:MH f/block-ML:MH f/block-MH:MH f/block-H:MH

M:H (MH) f/block-L:H f/block-ML:H f/block-MH:H g/block-M:H

MH:L (M) f/block-L:ML f/block-ML:L f/block-M:L f/block-H:L

MH:ML (M) f/block-L:ML f/block-ML:ML f/block-M:ML f/block-H:ML

MH:M (MH) f/block-L:M f/block-ML:M f/block-M:M f/block-H:M

MH:MH (MH) f/block-L:MH f/block-ML:MH f/block-M:MH f/block-H:MH

MH:H (H) f/block-L:H f/block-ML:H f/block-M:H g/block-MH:H

H:L (M) f/block-L:ML f/block-ML:L f/block-M:L f/block-MH:L

H:ML (MH) f/block-L:ML f/block-ML:ML f/block-M:ML f/block-MH:ML

H:M (MH) f/block-L:M f/block-ML:M f/block-M:M f/block-MH:M

H:MH (H) f/block-L:MH f/block-ML:MH f/block-M:MH f/block-MH:MH

block* z z z z z --/requested state

6

2. Inductive step: Verify that larger systems are

equivalent to smaller systems (Section 5.3).

Both verification steps are completed using the same

automated tool, Murφ. This single-tool verification

methodology is an important improvement over Fractal

Coherence [14]—which employs Murφ for the base case and

an equivalence checker for the inductive step—because the

use of a uniform tool avoids the need for mistake-prone

translation from one tool to another. Based on the results of

these two verification steps, we can then prove the fractal

DPM scheme is correct for any arbitrary number of

computing resources.

5.1 Proof of Verification Completeness

 There is a one-time proof (i.e., independent of the number

of computing resources) that shows the above two

verification steps are sufficient to inductively verify the

correctness of DPM schemes with any arbitrary number of

computing resources. The proof is very similar to that of

Fractal Coherence, and we refer the reader to that proof [14]

instead of replicating it here.

5.2 Base Case: Minimum System Verification

 The base case of the inductive proof is minimum system

verification. For our DPM scheme, the minimum system

includes two computing resources, one internal DPM

controller, and one root DPM controller, as shown in Figure

1. The minimum system is not chosen arbitrarily; it must

have all different kinds of components in the system to

ensure the completeness of verification. An example of an

incomplete minimum system would be a system that includes

only two computing resources and one root DPM controller.

Although this system is even smaller than the correct

minimum system, any further proof based on this system is

incomplete because a non-root DPM controller may actually

have spurious actions and those situations would have been

missed in this incomplete base case.

The verification of the minimum system is

straightforward. We describe the DPM scheme using the

expressive language in Murφ, and we specify the properties

we are interested in as invariants. In our model, the invariant

is that no two computing resources are in state H at the same

time. Murφ automatically traverses all possible reachable

states through explicit state enumeration and checks whether

the property is maintained throughout the entire state space.

5.3 Inductive Step: Equivalence Verification

 After verifying the power management of the minimum

system is correct, we need to show that at each scale the

system has exactly the same behavior in order to prove that

the scheme is also correct for larger scale systems. This

self-similarity feature is called fractal behavior and it is the

guarantee of correctness when the system scales.

 To check fractal behavior, we need to perform

equivalence verification. Specifically, we verify a form of

equivalence called “observational equivalence,” because we

care only that each scale of the system behaves the same

when observed from the outside world; internal actions are

ignored. Observational equivalence is transactional in that it

considers how systems react to inputs but not their timing.

We verify observational equivalence from two

perspectives. We refer to one equivalence as “looking

down,” because it is an equivalence between two children

observed by a DPM controller parent. We illustrate the

“looking down” equivalence in Figure 2. This equivalence is

to ensure that, when observed from the O1 point in the figure,

the systems inside the dashed boxes in Figure 2(a) and Figure

2(b) behave the same. The “looking down” equivalence

enables us to scale the system downward while maintaining

the illusion that any larger system behaves the same as the

single computing resource A in the figure.

We illustrate the other equivalence, which we call the

“looking up” equivalence, in Figure 3. When observed from

the O2 point, the systems inside the dashed boxes in Figure

3(a) and Figure 3(b) behave the same. The “looking up”

equivalence enables us to scale the system upward with the

guarantee that any larger system behaves the same as

sub-system B in the figure.

The overall impact of verifying these two equivalences is

that any scale of the system behaves the same.

There are a few tools that perform equivalence checking,

such as the bisimulator [1] in the CADP toolset [7] used in

Fractal Coherence. However, those tools usually do not use

the same language as Murφ, and the language translation

process is error-prone. Being able to use the same tool to

verify both the base case and the inductive step is preferable.

Figure 2. Observational Equivalence: “looking down” Figure 3. Observational Equivalence: “looking up”

7

Therefore, we leverage Park et al.’s aggregation checking

idea [11] to perform the equivalence verification with Murφ.

The idea was originally introduced to check that an

implementation of a protocol is consistent with its

specification. The implementation is a fine-grained

description of the execution, and the specification is an

abstraction of the protocol with coarse-grained atomicity.

The key idea is to use an aggregation function to map an

implementation state to a specification state by completing

any committed but incomplete transactions. Then an

invariant is checked about this mapping to ensure that the two

are actually consistent.

We find Park et al.’s aggregation method [11] to be a good

match for verifying observational equivalence because, by

executing all committed but incomplete transactions, it hides

the internal transitions and leaves us only the transitions we

are interested in. In our DPM scheme, the small system can

be considered the specification and the large system can be

considered the implementation. For example, as shown in

Figure 2, computing resource A is the specification and

sub-system A’ is the implementation. Computing resource A

always has atomic transitions, and sub-system A’ has many

internal transitions. The commit point in sub-system A’ is

when any request or reply message arrives at the internal

DPM controller. After a message passes through this DPM

controller, the message is in its post-commit stage and needs

to be processed until the end. The aggregation function is

designed in a way that it drains out all the committed

messages in all buffers inside sub-system A’.

 We perform each equivalence verification using the Murφ

model of the larger subsystem. Murφ performs the

equivalence verification automatically. It is worth

mentioning that Murφ enables the checking of the

equivalence to be performed “on-the-fly,” which means the

verification does not incur any increase in the state space

compared to the state space of the larger subsystem. That is to

say, if we can verify the correctness of the larger subsystem

without a state explosion problem, it is guaranteed that the

equivalence checking will not incur state explosion either.

6 Power Management Efficiency
Our fractal invariant guarantees that a DPM controller’s

two children are never both at the High power setting. The

implication of this invariant at the system level is that the

system-wide power consumption is upper bounded. The

most power that a system with C computational resources can

consume while maintaining this invariant is (C-1) MH + H.

That is, C-1 computing resources are at power level MH and

one computing resource is at power level H. This result

implies that, as the number of computing resources

approaches infinity, the maximum average power of the

computing resources approaches MH. We prove this in

Appendix B.

Maintaining a fractal invariant leads to some situations in

which our DPM scheme sacrifices performance that a

non-fractal DPM scheme could achieve. In Appendix B, we

prove that our system can end up with the average computing

resource power approaching MH and, in fact, it is legal for all

computing resources to be in state MH. Our DPM scheme

allows this situation, but it does not permit certain other

situations in which the system uses the same power. Clearly,

if all computational resources are allowed to be in MH, then

this system-wide power consumption should be legal in all

situations.

Consider the examples in Figure 4. On the left side, we

have a system in which the average computing resource

power is MH, and the invariant is maintained. On the right

side, the average computing resource power is still MH but

this system violates the invariant because the bottom-left

DPM controller has both of its children in state H.

This illegality is the price we pay for the verifiability of

our fractal DPM scheme. These suboptimal situations exist,

but fortunately they are rare and the inefficiency itself is

small. Our DPM scheme would force one of the two leaf

nodes on the bottom-left of the figure to be in state MH

instead of H, which is a relatively small performance

inefficiency. We quantify this performance impact in our

evaluation in Section 7.

7 Evaluation of Abstract System
In this section, we evaluate an abstract system that consists

of generic computing resources that request power from the

DPM scheme. This evaluation enables us to isolate

fundamental characteristics of the fractal DPM scheme

without obscuring them with implementation details. We

will experimentally evaluate our fractal DPM scheme as

implemented in a real system in Section 9.

The goal of the evaluation in this section is to determine

whether our fractal DPM scheme does a good job of

allocating a fixed power budget to computing resources. One

can easily design a DPM scheme that never exceeds a power

budget by simply turning off all of the computing resources;

clearly, there is more to DPM than just staying within the

power budget.

7.1 Simulation Methodology

We wrote a simple simulator to model a system with a

parameterizable number of abstract computing resources.

Each abstract computing resource periodically changes its

Xmaxi and, as a result, requests a new power setting from its

parent DPM controller. The simulator randomly chooses the

Xmaxi values for each computing resource at each time step

Figure 4. Example Inefficiency Due to Fractal Invariant

8

and models the behaviors of the computing resources and the

DPM controllers that were specified in Table 3-Table 5 (e.g.,

changing states, sending requests, granting/denying requests,

etc.). The simulator computes the performance of each

computing resource as a function of the power it is granted by

the DPM scheme per time step. We simulate for millions of

time steps to obtain statistically significant results.

To quantify our results, we must assign numerical values

to the power settings (Low-High) and Xmaxi. We map the

power settings as: L=5, ML=10, M=15, MH=20, and H=25.

For Xmaxi, we set it equal to the requested power. For

example, if a computational resource requests ML, its

Xmaxi=10.

7.2 Performance Modeling

One challenge in evaluating a DPM scheme is determining

the performance of a computing resource at a given power

setting. For a given computing resource, there are many

ways it could use its power allocation. Two computing

resources at the same power setting could run the same

software but achieve different performance based on how

they use that power. For example, consider two processor

cores, both of which are allocated a low power setting. One

core could stay within its power allocation by using all of its

resources but at a lower clock frequency, while the other core

stays within the same power allocation by keeping a higher

clock frequency but disabling some of its resources.

To avoid muddying the evaluation with the specific details

of how each computing resource uses its power allocation,

we abstract away the relationship between performance and

power. We consider a computational resource’s performance

to be a function of its power setting and its Xmaxi, and we

consider two functions that are representative of typical

performance/power relationships. The two functions are:

1 = max , + , ℎ 	 = 10

2 = max ,

The first performance equation represents a system in

which adding power leads to decreasing marginal

performance benefit (e.g., using more power to enable a

faster core clock frequency helps performance but eventually

performance becomes memory-bound). The second equation

offers linear performance benefit (e.g., ideal

voltage/frequency scaling). In real systems, performance

would likely fall between these two performance curves.

7.3 Comparisons

Rather than compare against a vast number of prior DPM

schemes—and try to match a wide range of assumptions

made in these schemes—we compare against the ideal case

of an (unimplementable) oracle. The oracle exhaustively

searches for the best possible allocation of power settings for

all of the computing resources. The oracle satisfies the same

system-wide power invariant that results from the fractal

DPM’s fractal invariant, but the oracle is not constrained by

the fractal invariant. The oracle can perform both power

allocations shown in Figure 4, whereas the fractal DPM can

only perform the allocation on the left side of the figure. Our

fractal DPM scheme obviously cannot perform as well as the

oracle, but our goal is to show that its performance is close to

the oracle.

7.4 Results

In Figure 5, we plot the CDF of the percentage

performance loss of fractal DPM, with respect to the oracle

DPM. Figure 5a and Figure 5b correspond to perf1 and

perf2, respectively. The modeled system has 8

computational resources.
2

We observe that, in the majority of the time steps (>72%

for both perf1 and perf2), fractal DPM achieves the exact

same performance as the oracle. When fractal DPM does fall

short of the oracle’s performance, the performance gap is

never more than 37% for perf1 and 46% for perf2. The

discrepancy between fractal DPM and the oracle is somewhat

greater for perf2, because perf2 models greater performance

2 We cannot, in a reasonable amount of time, simulate the oracle DPM for

more computational resources.

(a) Perf1 (b) Perf2

Figure 5. Percentage performance loss of fractal DPM compared to oracle DPM

9

at higher power states, and thus being at a lower power state

(to maintain the fractal invariant) is somewhat more costly.

Overall, these results confirm that there are few situations in

which fractal DPM sacrifices performance and that, in these

situations, the amount of performance sacrificed is relatively

small.

8 Implementation
An abstract implementation and evaluation can provide

insight, but the true merit of a DPM scheme can only be

confirmed by implementing it in a real system and evaluating

the implementation. We already know that the scheme is

correct and has no fundamental performance limitations, yet

real systems can reveal practical issues—such as latencies

and bandwidths—that are ignored in our abstract evaluation.

We have implemented our fractal DPM scheme across two

8-core x86 machines from AMD, as illustrated in Figure 6.

There are many different ways in which our DPM scheme

could change the power allocations to cores. For our

experiments, we chose dynamic voltage/frequency scaling

(e.g., as in Isci’s well-known scheme [8]). That is, when a

core requests a change in power, the DPM adjusts the core’s

voltage and frequency accordingly. Dynamic

voltage/frequency scaling (DVFS) offers perhaps the most

intuitive relationship between power allocation and

performance, which is why we chose it despite some recent

studies showing that it might not be the best mechanism for

power management [4]. We map L, ML, M, MH, and H to

the following frequencies (all in GHz): L=1.4, ML=2.1,

M=2.7, MH=3.3, and H=3.6.

 Each machine is divided into 4 voltage/frequency

domains, i.e., voltage/frequency can be adjusted at the

granularity of a pair of cores but not on a finer, per-core

granularity. A computing resource is thus a pair of cores in

this implementation. Recall, though, that our fractal DPM

can operate at any granularity, so operating at a 2-core

granularity poses no problems. Each machine runs Linux,

and we implement the DPM controllers as daemons that run

on the machines. (Note that there is some asymmetry in

mapping DPM controllers to machines.) Communication

between cores and DPM controllers and between DPM

controllers is performed over sockets.

We consider one minor optimization of the fractal DPM

implementation in which a core pair that has a power request

denied re-requests a power setting that is one level below the

denied request (instead of just staying at its current setting).

In our experimental results, we denote this scheme as

OptFractalDPM. It is important to note that making core

pairs re-request power settings does not involve changing the

DPM scheme; the DPM scheme is orthogonal to the

decisions the core pairs make when requesting power levels.

Hence, OptFractalDPM preserves the scalable verifiability of

FractalDPM.

9 Evaluation of Implementation
We have several goals in this experimental evaluation.

• Compare the power and performance of fractal DPM

against an unimplementable oracle DPM scheme that

always assigns the optimal power levels to core pairs.

• Compare the power and performance of fractal DPM

against a provably correct power management scheme

that statically sets all cores to a given power level.

• Determine the latency to service requests for new

power levels

9.1 Experimental Methodology

In all of our experiments, we run multithreaded

benchmarks on both machines. On our particular machines,

the power efficiency is, perhaps surprisingly, largely

independent of the benchmark itself. That is, the optimal

power setting for a core pair is almost entirely a function of

the duty cycle of that core pair rather than which benchmark

the core pair is running when it is not idle [4]. That is, if a

core pair runs benchmark B1 for 40% of its time and is idle

the other 60% of its time, it will have the same optimal power

setting if it instead ran benchmark B2 for 40% of its time and

was idle for the other 60%.

For experimental consistency, we chose a single

2-threaded application, bodytrack, from the Parsec suite [2],

and we run this application on every core pair. We make

each core pair a “cset” and pin applications to csets so that

applications run to completion on the desired core pairs.

Over the duration of each experiment, we vary the duty cycle

of each core pair by varying the idle time between arrival

times of new bodytrack jobs. We experimented with more

sophisticated workloads with different benchmarks and

combinations of different benchmarks, but the results (not

shown) were nearly identical.

Before running our experiments, we ran each benchmark

(i.e., interval of time with bodytrack running with a given

duty cycle) to determine the optimal power setting for a core

pair running that benchmark. We define the optimal power

setting as the power setting that maximizes the

energy×delay
2
 product. Hence, we developed 5 benchmarks,

each of which has a unique power setting under which it runs

optimally. We generate a random sequence of these

benchmarks for each core pair before our experiments. We

then use the same sequences of benchmarks for our

experiments on each of the DPM schemes to ensure that the

Figure 6. Implementation on Real System

10

same amount of work is done in each experiment. We

disabled c-states on the machines, to prevent the hardware

from choosing to run at a lower frequency than the one we

wish to run at.

 Because the results are sensitive to how the core pair

decides what power level to ask for and because this decision

policy is orthogonal to our work here, we eliminate its impact

by having core pairs ask for the pre-determined optimal

power setting of a benchmark before running it.

In all experiments, we measure power with a “WattsUp?”

power meter between the outlet and our machines.

9.2 Comparison to Oracle Power Management

As in our abstract evaluation in Section 7, we seek to

compare fractal DPM to an unimplementable oracle DPM.

The oracle always makes the ideal allocation of power to the

core pairs, and the oracle has a pre-memoized set of decisions

so that at runtime it consumes minimal latency and power.

(Fractal DPM takes time and power to make decisions at

runtime.) Comparing fractal DPM to this oracle shows how

much the fractal DPM sacrifices in order to be both

implementable and verifiable.

We plot the results of this experiment in Figure 7. We

compare oracle, fractal DPM, and the optimized fractal

DPM, and the comparisons are with respect to delay, energy,

and ED
2
. All results in the figure are normalized to a trivially

correct DPM scheme that statically sets all cores to the MH

power level. The results show that there is indeed a gap

between Oracle and fractal, but that the ED
2
 gap is small

(approximately 8% for fractal and 2% for the optimized

fractal). These results corroborate the results from our earlier

abstract evaluation.

9.3 Comparison to Static Power Management

In order to illustrate the efficacy of fractal DPM in

optimizing power-efficiency, we compare it to schemes that

statically allocate fixed power levels to all cores. Static

allocation schemes are trivially correct in maintaining

system-wide power invariants. We are unaware of any other

scalable power management scheme that is provably correct.

The results of this comparison are in Figure 8. The figure

compares fractal DPM and the optimized fractal DPM to

static settings of ML, M, MH, and H. (The static-L scheme

does so poorly that, if included in the graph, it obscures the

more interesting trends.) The comparisons are with respect

to the oracle DPM, i.e., smaller values are better. The figure

shows that, in terms of ED
2
, the fractal and optimized fractal

achieve better results than the static schemes. The static-ML

and static-M schemes achieve impressive energy savings, but

their performance is quite poor. The static-H scheme

achieves excellent performance but at a steep energy cost.

9.4 Latency

One possible concern with fractal DPM is whether

requests will take too long to be serviced. This latency

includes the communication time between the core and its

parent DPM controller and possibly between the parent DPM

controller and its ancestors. This latency also includes the

time required for the DPM controller daemons to wake up

and determine what actions to take. Response time is not

terribly critical since it is never on the critical path of

execution (i.e., a core pair never stops executing while

waiting for a new power level), but this latency is on the

critical path to changing the power level of a core pair.

In Figure 9, we plot the results of performing a large

number of power setting requests in our implementation.

These results are admittedly a function of our particular

hardware platform and operating system, but they give some

idea of what response times are likely to be. The figure is the

Figure 7. Comparison to Oracle

Figure 8. Comparison to Static DPM

Figure 9. Fractal DPM Response Time

11

CDF of the response time, and we observe that the vast

majority of service times are within 1 msec. Almost 100% of

requests are serviced within 3 msec. For perspective, a

round-trip of datagram messages on our system—sending

and receiving a message—takes 0.6 msec on average.

10 Related Work
There are two pieces of prior work that are most related to

our work here. The first is Lungu et al.’s research on

verifiable DPM for multicore processors [9]. They observed

that DPM schemes (prior to our work here) cannot be verified

with model checkers for more than a handful of cores. They

showed the relationship between the number of power

settings and the state space explosion, and they proposed

designing the DPM scheme at the granularity of a handful of

cores. There have been many other DPM schemes, including

[10][8][6], but we are unaware of any other DPM scheme

that considers verification.

The other work that inspires this work is fractal coherence

[14]. The authors showed how to use the fractal design to

enable scalably verifiable cache coherence protocols for

multicore processors. A DPM protocol has similarities to a

coherence protocol, but there are also key differences

including, most notably, the invariants to be verified. We

have leveraged this prior work for the idea of fractal design

and for the proof of how a fractal design enables an inductive

verification in two steps. We chose a simpler and more

robust methodology for performing the equivalence

verification (inductive step).

11 Conclusions
We have shown how to design the first dynamic power

management protocol that can be formally verified for any

number of computational resources. The key to scalable

verification is the use of a fractal design methodology that

enables an inductive proof of correctness. We have

developed one concrete implementation of the fractal DPM,

and one avenue of future work is to extend fractal DPM to

larger scale systems, including datacenters.

Our analytical and experimental results both show that the

fractal DPM protocol sacrifices only a small amount of

performance compared to an oracle that makes optimal

decisions at every time step, and we believe this sacrifice is

worthwhile in order to achieve confidence is the DPM

protocol’s behavior.

Acknowledgments
This material is based upon work supported by the

National Science Foundation under grant CCF-0811290.

References
 [1] D. Bergamini, N. Descoubes, C. Joubert, and R. Mateescu,

“BISIMULATOR: A Modular Tool for On-the-Fly Equivalence

Checking,” in Proceedings of TACAS’05, volume 3440 of LNCS,

2005, pp. 581–585.

[2] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC

Benchmark Suite: Characterization and Architectural Implications,”

in Proceedings of the International Conference on Parallel

Architectures and Compilation Techniques, 2008.

[3] C.-T. Chou, P. Mannava, and S. Park, “A Simple Method for

Parameterized Verification of Cache Coherence Protocols,” in

Formal Methods in Computer-Aided Design, 2004, pp. 382–398.

[4] G. Dhiman, K. K. Pusukuri, and T. Rosing, “Analysis of Dynamic

Voltage Scaling for System Level Energy Management,” in

Proceedings of the 2008 Conference on Power Aware Computing

and Systems, 2008.

[5] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang, “Protocol

Verification as a Hardware Design Aid,” in IEEE International

Conference on Computer Design: VLSI in Computers and

Processors, 1992, pp. 522–525.

[6] A. Efthymiou and J. D. Garside, “Adaptive Pipeline Depth Control

for Processor Power-Management,” in Proceedings of the IEEE

International Conference on Computer Design, 2002.

[7] J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu,

and M. Sighireanu, “CADP - A Protocol Validation and Verification

Toolbox,” in Proceedings of the 8th International Conference on

Computer Aided Verification, 1996, pp. 437–440.

[8] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi,

“An Analysis of Efficient Multi-Core Global Power Management

Policies: Maximizing Performance for a Given Power Budget,” in

Proceedings of the 39th Annual IEEE/ACM International

Symposium on Microarchitecture, 2006.

[9] A. Lungu, P. Bose, D. J. Sorin, S. German, and G. Janssen,

“Multicore Power Management: Ensuring Robustness via

Early-Stage Formal Verification,” in Proceedings of the Seventh

ACM-IEEE International Conference on Formal Methods and

Models for Codesign (MEMOCODE), 2009.

[10] R. Maro, Y. Bai, and R. I. Bahar, “Dynamically Reconfiguring

Processor Resources to Reduce Power Consumption in

High-Performance Processors,” in Proceedings of the Workshop on

Power-Aware Computer Systems, pp. 97–111, Nov. 2000.

[11] S. Park, S. Das, and D. L. Dill, “Automatic Checking of

Aggregation Abstractions Through State Enumeration,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 19, no. 10, pp. 1202–1210, Nov. 2006.

[12] S. Park and D. L. Dill, “Verification of FLASH Cache Coherence

Protocol by Aggregation of Distributed Transactions,” in

Proceedings of the Eighth ACM Symposium on Parallel Algorithms

and Architectures, 1996, pp. 288–296.

[13] D. J. Sorin, M. Plakal, M. D. Hill, A. E. Condon, M. M. K. Martin,

and D. A. Wood, “Specifying and Verifying a Broadcast and a

Multicast Snooping Cache Coherence Protocol,” IEEE Transactions

on Parallel and Distributed Systems, vol. 13, no. 6, pp. 556–578,

Jun. 2002.

[14] M. Zhang, A. R. Lebeck, and D. J. Sorin, “Fractal Coherence:

Scalably Verifiable Cache Coherence,” in Proceedings of the 43rd

Annual IEEE/ACM International Symposium on Microarchitecture,

2010.

 Appendix A: Special State in DPM Controller

In Section 4.3.2, we specified the DPM controller

behavior, which includes an unusual state and transition.

Namely, the controller can, at any time, optionally choose to

transition from state L:H to state X:H
F
 and vice versa. This

seemingly useless state and transition are required for

purposes of verifying the “looking up” equivalence (refer to

Section 5.3).

Consider the example in Figure 10. In both halves of the

figure, the bottom left computational resource requests High

power. Its parent DPM then requests MH, because a

combination of H with the right child’s M averages to MH.

In Figure 10a, the shaded DPM controller grants the request

because its new state, MH:H, is legal. In fact, in Figure 10a,

12

there exists no state in which the shaded controller (and thus

subsystem B) denies a request for MH.

 In Figure 10b, however, the shaded DPM controller

denies the request for MH. If it granted the request, its state

would be MH:H, which averages to H. Then the shaded

DPM’s parent would have two children in state H, which is

illegal. Thus subsystem B’ has a state—the state in which it

rejects a request for MH—that subsystem B does not have.

To make B and B’ equivalent, we add a new state to DPM

controllers, called X:H
F
. This state denotes a DPM controller

whose right child is in H and that will deny a request for MH

from its left child. By setting the shaded DPM controller in

Figure 10a to this new state, B is equivalent to B’.

A crucial insight is that we added this DPM controller state

to enable verification and not because we ever want to use it

in the small system of Figure 10a. However, it has to exist

and be reachable in order for subsystem B to have a state that

is equivalent to the state of B’ in Figure 10b.

Appendix B: Chip-Wide Power Consumption
Definitions: Let Tn be the set of all possible binary trees with

n computational resources that that satisfy our fractal

invariant. For a tree t∈Tn, let C(t)={c1, … cn} be the set of

computational resources in t. The power consumption of tree

t∈Tn is:			 = ∑ , and we denote the power of a

computational resource as one of {L, ML, M, MH, H}. We

define Pequiv(t) as the average power of the children of t as

specified in Table 1. We define = max ∈ .

We denote replacing a computational resource ci in tree t with

an arbitrary tree s with m computational resources as:

	→ ∈ . Lastly, we define
̂ ∈ 	 ℎ	 ℎ 	 = 	 	 , … , = .

Now we inductively prove that ∀ 	 = ̂ .

Base case: Pmax(1) = H, which satisfies the constraint that

1 = ̂ .

Inductive step: Assume = ̂ .

Let be an arbitrary element of Tk+1. Then, ∃	 ∈
	such	that	 = → ̅ 	 ∈ and such that

Pequiv(̅)=P(). This is true by the “looking down”

observational equivalence because, for any tree t’, there

exists an observationally equivalent tree t from which it can

be scaled—by replacing a computational resource ci with a

tree ̅ with two computational resources—such that none of

the states of the nodes of t are changed. That is, ̅ has an

average power equal to that of ci.

There are two cases to consider:

Case #1: P(ci)≠H:

From Table 1, the possible power settings that average to

any non-H state always sum to be less than or equal to twice

the state they average to. So, since the power of the

computational resources of ̅ average to , the sum of

their power states will always be less than or equal to twice

. Thus:

≤ − + 2

≤ +

Given that the highest power state that ≠ can be

in is MH, and by the inductive step,

≤ + ≤ + = ̂

≤ ̂

Because was an arbitrary element in Tk+1, then
̂ = 	 + 1 .

Case #2: P(ci)=H:

From Table 1, for a tree satisfying our invariant, the only

power settings that average to H=P(ci) are H:MH and MH:H.

Thus:

= − + +

By the inductive step,

= + ≤ + = ̂

≤ ̂

Again, because was an arbitrary element in Tk+1,

 + 1 = 	 ̂ = − 1 +H.∎

Figure 10. Observational Equivalence: “looking up”

