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Abstract 

Dynamic power management (DPM) is critical to 

maximizing the performance of systems ranging from 

multicore processors to datacenters. However, one 

formidable challenge with DPM schemes is verifying that the 

DPM schemes are correct as the number of computational 

resources scales up.  In this paper, we develop a DPM 

scheme such that it is scalably verifiable with fully automated 

formal tools.  The key to the design is that the DPM scheme 

has fractal behavior; that is, it behaves the same at every 

scale.  We show that the fractal design enables scalable 

formal verification and simulation shows that our scheme 

does not sacrifice much performance compared to an oracle 

DPM scheme that optimally allocates power to 

computational resources.  We implement our scheme in a 

2-socket 16-core x86 system and experimentally evaluate it. 

1 Introduction 
For the computer systems of today and tomorrow, the 

limiting constraint is power.   Computer architects strive to 

achieve the greatest possible performance within a given 

power budget.  One way in which computers maximize their 

power-efficiency (performance per watt) is through the use 

of dynamic power management (DPM). At runtime, 

computers dynamically re-allocate power to hardware 

resources.  DPM may involve dynamic voltage and/or 

dynamic frequency scaling, dynamic power gating, dynamic 

clock gating, etc. DPM is performed at many 

granularities—among cores on a multicore processor chip 

and among processors within a datacenter—although the 

DPM schemes at each level may vary. 

Designing an effective DPM scheme is challenging, and 

this challenge is exacerbated by the increasing scale of 

computer systems.  Multicore processors contain increasing 

numbers of cores, and datacenters contain increasing 

numbers of processors.  With more hardware resources to 

which to allocate power, the DPM algorithm has many more 

options for how to allocate power.  For a DPM scheme to be 

useful, it must be scalable to large-scale systems. 

DPM is a well-studied field with many published 

techniques [10][8][6], but one major concern with 

implementing a DPM scheme is verifying that the scheme 

behaves correctly in all possible situations.  Furthermore, as 

system sizes grow, verification becomes more difficult.  

DPM protocols are similar to cache coherence protocols in 

their complexity and in the difficulty of verifying them 

correct.  Verification is critical, because a bug in a DPM 

scheme can lead to a chip or a rack that overheats and 

damages itself or to a system that is far less power-efficient 

than it could be.  However, there is currently no automated 

way to verify that a DPM scheme is correct for an arbitrary 

number of computing resources.  The only prior approach is 

to divide a multicore processor into small groups of cores 

(e.g., 3 cores per group) and verify that each group manages 

its own  power correctly [9]. 

In this paper, we develop a new DPM scheme that we 

design specifically to be scalably verifiable with fully 

automated formal verification tools.  Our approach creates a 

DPM scheme that is hierarchical and, more importantly, 

fractal, i.e., has the same behavior at every level.  We 

leverage the fractal nature of the DPM scheme to enable an 

inductive proof that the scheme is correct for any number of 

computing resources (i.e., for any number of levels of 

hierarchy).  Our DPM scheme borrows the fractal idea from a 

recent paper in cache coherence [14] and adapts and extends 

it to the new context of dynamic power management.  To the 

best of our knowledge, our fractal DPM scheme is the first 

DPM scheme that is scalably verifiable with fully automated 

formal tools. 

In this paper, we first present our system model (Section 2) 

and explain why it is difficult to verify DPM schemes for this 

model (Section 3).  Motivated by the verification challenge, 

we present our fractal DPM scheme (Section 4) and show 

how we can verify it at any scale (Section 5).   We explain 

how the fractal DPM potentially sacrifices performance in 

order to maintain its fractal behavior (Section 6) and evaluate 

an abstract system to show there are no fundamental 

performance limitations (Section 7).   We then describe our 

software implementation of the fractal DPM scheme on a real 

x86 system with 16 cores (Section 8) and experimentally 

evaluate it (Section 9).  Lastly, we compare fractal DPM to 

prior work (Section 10) and conclude (Section 11). 

2 System Model 
We assume a system with an arbitrary number of 

computing resources, C.   These computing resources can be 

cores or multicore processors, and we intentionally treat them 

abstractly to highlight the generality of our approach.   (In our 

implementation that we present later in the paper, each 

computing resource is a pair of cores.)  The computing 

resources are homogeneous in how they interact with DPM 

but can otherwise be heterogeneous. Each computing 

resource Ci individually and dynamically requests power that 

is directly proportional to Xmaxi, where Xmaxi is the current 

performance of computing resource Ci if Ci is allocated its 

maximum possible power.   
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2.1 DPM Model 

The DPM scheme dynamically assigns to each computing 

resource Ci a power allocation, Pi.  A computing resource’s 

performance, Xi, is a function of its power allocation and its 

unconstrained performance at that time, Xmaxi. That is, Xi = 

f(Pi, Xmaxi).   Later in this paper, we explore specific 

performance functions, but we intentionally keep this 

function abstract for now. 

The goal of the DPM scheme is to allocate a fixed 

system-wide power budget, B, to the computing resources, in 

response to their requests, so as to maximize the performance 

of the system.  That is, the DPM scheme seeks to maximize 

ΣXi under the constraint that ΣPi < B.      

2.2 Power and Performance Model 

Without loss of generality, we assume that there are five 

possible power settings for each computing resource: Low 

(L), Medium-Low (ML), Medium (M), Medium-High (MH), 

and High (H).  These power settings can correspond to 

different voltage/frequency settings, different power gating 

settings, etc.  For example, setting a processor core to the 

Low power setting could mean setting the core to a 

low-voltage and low-frequency or it could mean powering 

down the core.   The mapping from abstract power states to 

concrete configurations of computing resources is orthogonal 

to our work. 

We further assume that each computing resource’s Xmaxi 

has five possible values, also labeled L, ML, M, MH, and H.  

A computing resource will thus request a power setting equal 

to its Xmaxi.   

3 Verification Scalability Problem 
As computer architects, we seek to design our DPM 

scheme to “fit” existing tools rather than attempt to develop 

new tools. In this work, we focus only on fully automated 

formal verification methodologies. We do not consider 

informal simulation-based validation (i.e., simulating 

extensively to try to uncover design bugs), because it is 

fundamentally incomplete (i.e., cannot find all bugs).   We 

also do not consider formal verification methodologies such 

as theorem proving [12] and parametric verification [3], both 

of which are scalable but require substantial manual effort 

from verification experts.   

For our automated tool, we choose the well-known 

Murφ [5] model checker.  A model checker exhaustively 

searches the reachable state space of a design and checks that 

specified invariants are maintained in every possible 

reachable state.   

Model checking is an exhaustive technique for verification 

but it suffers from the well-known state space explosion 

problem.  Exhaustively searching the state space of a 

non-trivial system is generally infeasible.  Consider our 

system with DPM.  If each computing resource can be in one 

of five states, then the number of states in the system is on the 

order of 5
C
.  Clearly, there is some value of C beyond which 

the state space exceeds the capability of the model checker. 

 One typical approach to this state space explosion 

problem is to model check a small-scale instance of the 

desired system.  For example, one might model check a 

system with three computing resources, because that is the 

limit of the state space that can be explored.  However, model 

checking a system with three computing resources does not, 

in general, ensure that systems with more computing 

resources are correct.   

Our goal in this work is to design a DPM scheme that we 

can verify for any arbitrary number of computing resources. 

4 Fractal DPM Design 
Given the state space explosion problem, our strategy for a 

scalably verifiable DPM scheme is to design it such that we 

can leverage the power of induction.  The key insight is that a 

fractal design—a design in which the system behaves the 

same at every scale—enables an inductive verification.   We 

need to verify two aspects of the design.  First, we must 

verify that the base case of the induction, the smallest scale of 

the system, is correct (i.e., never exceeds its power budget).  

Second, we must verify the inductive step, i.e., that the 

Table 1.  Averaging Power Settings of Children.  Bracketed 

entries are symmetric (e.g., L:ML and ML:L). 

Node 

Power 

Possible Power Settings of Children 

L L:L 

ML {L:ML, ML:L}, {L:M,M:L}, ML:ML 

M {L:MH, MH:L}, {L:H, H:L}, {ML:M, M:ML}, 

{ML:MH, MH:ML}, M:M 

MH {M:MH, MH:M},{ML:H,H:ML},{M:H,H:M} MH:MH 

H {MH:H, H:MH}, H:H 

  

Table 2.  Notation for Describing DPM Actions 

label action 

a send request for L (ReqL) request to parent  

b send request for ML (ReqML) request to parent  

c send request for M (ReqM) request to parent  

d send request for MH (ReqMH) request to parent  

e send request for H (ReqH) request to parent  

f send GrantPowerReq response to left child 

g send DenyPowerReq response to left child 

h send Ack to parent 

z stall request 

 
Figure 1.  DPM scheme with 3 computing resources 
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design is indeed fractal.  Critically, both of these verification 

steps are fully automated with Murφ.  We defer a discussion 

of the actual verification until Section 5, but we have outlined 

it here to provide intuition for our design. 

4.1 Fractal System Organization 

In Figure 1, we illustrate the smallest scale system, which 

has three computing resources.  Our fractal systems are 

hierarchical, based on a binary tree organization.  The leaves 

of the tree are the computing resources, and the intermediate 

nodes are DPM controllers.  Each DPM controller is a simple 

finite state machine that records the power states of its 

children as well as some state regarding in-flight requests for 

power.   

Each computing resource can request a new power setting 

by sending a request to its parent DPM controller.  

Depending on the request and its current state, the DPM 

controller either responds directly to the computing resource 

or sends a request to its parent DPM controller. 

Because of the fractal design of the DPM scheme, we often 

reason about a DPM controller with its two children as a 

single “node” that behaves like a single computing resource.  

If the two children are at different power settings, we average 

them (and round up) to obtain the power setting of the node.  

The averaging/rounding process is listed in Table 1, where 

we denote the power settings of the children in the form X:Y, 

where X and Y are the power settings of the left and right 

child, respectively.  For example, state L:M denotes that the 

left child is in state L and the right child is in state M.   

4.2 Maintaining Fractal Power Invariants 

To be fractal, our DPM scheme’s behavior must be fractal 

(described next in Section 4.3) and the invariants it maintains 

must be fractal.  For example, we cannot specify as an 

invariant that the average power of all computational 

resources on the chip is a given power level (e.g., MH).  An 

invariant must be applicable at all scales of the system, not 

just when considering the system as a whole.  This need for 

fractal invariants distinguishes our DPM scheme from all 

prior DPM schemes of which we are aware.  The fractal 

invariant we specify here for DPM also distinguishes this 

work from Fractal Coherence [14] because the coherence 

invariant is naturally fractal and power invariants are not. 

The specific fractal invariant we choose is: 

 

 

 

 

This invariant is useful for a system that has a power 

budget less than what would be drawn by all of its computing 

resources if they were all operating at their highest power 

setting.  Such a system could be a multicore processor or a 

datacenter.  As a concrete example, an Intel multicore 

processor with  TurboBoost cannot let all of its cores operate 

at the highest power setting (in fact, only one core can be at 

the TurboBoost setting). 

By maintaining this fractal invariant at every level, the 

DPM scheme limits system-wide power consumption.  In 

Section 6, we analyze the relationship between our fractal 

invariant and system-wide power consumption and show 

that, as a result of this fractal invariant, the average power 

consumption of all computing resources asymptotically 

approaches a maximum of MH.  For example, consider an 

8-core chip with an 80W chip-wide power budget.  If we 

equate a core at MH with a 10W per-core power budget, then 

our DPM scheme is provably guaranteed to enforce the 

chip-wide power budget.  If we instead have a datacenter 

with 10,000 nodes and a 1MW power budget, then we would 

equate MH with a 100W per-node power budget. 

We could have chosen another fractal invariant, such as 

“both children are never at H or MH at the same time” or “the 

average power of both children is never more than MH”, etc.   

Whatever fractal invariant we choose requires us to analyze 

the relationship between this fractal invariant and chip-wide 

power consumption, as we do for the invariant in this paper.  

Future work will explore other fractal invariants, but we do 

not believe that the choice of fractal invariant qualitatively 

affects the contributions or conclusions of our work. 

4.3 Fractal DPM Scheme Specification 

In this section, we precisely specify the behaviors of the 

computing resources and the DPM controllers.  We use a 

table-based specification methodology [13] to specify these 

finite state machines.  The rows of a table correspond to 

states, and the columns correspond to events.  Each entry in 

the table corresponds to a state/event combination, and the 

entry specifies what happens in that situation.  An entry has 

the form Actions/NextState.  To keep the tables concise, we 

denote actions using a shorthand notation shown in Table 2.  

For example, a table entry of the form “d/MH” would denote 

that the finite state machine sends a request for MH (ReqMH) 

to its parent DPM controller and then changes its state to MH.  

A shaded entry in the table denotes that this entry is 

impossible; the given event cannot occur in the given state.  

An entry with “--“ denotes that no action or state change 

occurs. There are some states and transitions that are required 

Table 3.  Specification of Behavior of Computational Resource 

 Xmaxi Demand  Responses from Parent Controller 

State L ML M MH H GrantReq DenyReq 

L -- b/pend-ML c/pend-M d/pend-MH e/pend-H   

ML a/pend-L -- c/pend-M d/pend-MH e/pend-H   

M a/pend-L b/pend-ML -- d/pend-MH e/pend-H   

MH a/pend-L b/pend-ML c/pend-M -- e/pend-H   

H a/pend-L b/pend-ML c/pend-M d/pend-MH --   

pend-* z z z z z h/requested state h/previous state 

Fractal Invariant: It is impossible for both children of a 

DPM controller to be at the High power setting at the 

same time.   
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to maintain fractal behavior, and they are in bold text in the 

tables. 

4.3.1 Computing Resource Specification 

In Table 3, we specify the behavior of each computing 

resource.  The rows of the table are the states of the finite 

state machine, i.e., possible power settings.  One state is 

labeled “pend-*”, which is shorthand for a family of pending 

states in which the computing resource has requested a new 

power state and is waiting for a response.  For example, 

pend-L denotes waiting for Low power.  The columns 

correspond to events that are either changes in demand 

(Xmaxi) from the computing resource or responses from the 

parent DPM controller.   

The power management behavior of a computing resource 

is fairly simple.  It responds to changes in demand by issuing 

requests for changes in power.  It changes its power based on 

responses from its parent DPM controller. 

4.3.2 DPM Controller Specification 

We specify the behavior of each non-root DPM controller in 

Table 4, and we specify the behavior of the root DPM 

controller in Table 5.  The specifications differ in that the root 

DPM controller has no interactions with a parent.  The state 

names are of the form X:Y (Z), where X and Y are the power 

settings of the left and right children, respectively, and Z is 

the average power of the two children.  The DPM controllers 

have two state names that are shorthand for families of states: 

pend-* and block-*.  The block-* state family includes states 

such as block-L:ML, in which the DPM controller granted or 

denied a request to a child and is blocked waiting on the Ack 

from the child and will then go to state L:ML.   

The tables are admittedly dense and likely hard to read, but 

our goal is to show a complete specification and to reveal that 

the entire finite state machine is not terribly complicated (i.e., 

fits on a dense page).  The reader does not need to walk 

through each entry of each table but rather is encouraged to 

skim some entries to get a feel for how the protocol works. In 

an effort at conciseness, we include in the tables only the 

requests from the left child and responses to requests from 

the left child; the behavior with respect to the right child is 

identical.   

The power management behavior of the DPM controllers 

is significantly more complicated than that of the computing 

resources.  Notably, the non-root DPM controller must query 

Table 4.  Specification of Behavior of Non-Root DPM Controller  

Bolded entries show states/situations that are specially required to maintain fractal behavior. 

 

 Messages from Left Child 

(messages from right child are symmetric) 

Messages from 

Parent 

(for requests from 

left child) O
p

ti
o

n
a

l 

 

State ReqL ReqML ReqM ReqMH ReqH Ack GrantReq DenyReq  

L:L (L)  b/pend-ML:L b/pend-M:L c/pend-MH:L c/pend-H:L     

L:ML (ML)  f/block-ML:ML c/pend-M:ML c/pend-MH:ML d/pend-H:ML     

L:M (ML)  c/pend-ML:M c/pend-M:M d/pend-MH:M d/pend-H:M     

L:MH (M)  c/pend-ML:MH d/pend-M:MH d/pend-MH:MH e/pend-H:MH     

L:H (M)  d/pend-ML:H d/pend-M:H e/pend-MH:H g/block-L:H    --/X:HF 

X:HF (M)  d/pend-ML:H d/pend-M:H g/block-X:HF g/block-X:HF    --/L:H 

ML:L (ML) a/pend-L:L  f/block-M:L c/pend-MH:L c/pend-H:L     

ML:ML (ML) f/block-L:ML  c/pend-M:ML c/pend-MH:ML d/pend-H:ML     

ML:M (M) b/pend-L:M  f/block-M:M d/pend-MH:M d/pend-H:M     

ML:MH (M) f/block-L:MH  d/pend-M:MH d/pend-MH:MH e/pend-H:MH     

ML:H (MH) c/pend-L:H  f/block-M:H e/pend-MH:H g/block-ML:H     

M:L (ML) a/pend-L:L f/block-ML:L  c/pend-MH:L c/pend-H:L     

M:ML (M) b/pend-L:ML b/pend-ML:ML  f/block-MH:ML d/pend-H:ML     

M:M (M) b/pend-L:M f/block-ML:M  d/pend-MH:MH d/pend-H:M     

M:MH (MH) c/pend-L:MH c/pend-ML:MH  f/block-MH:MH e/pend-H:MH     

M:H (MH) c/pend-L:H f/block-ML:H  e/pend-MH:H g/block-M:H     

MH:L (M) a/pend-L:L b/pend-ML:L b/pend-M:L  f/block-H:L     

MH:ML (M) b/pend-L:ML b/pend-ML:ML f/block-M:ML  d/pend-H:ML     

MH:M (MH) b/pend-L:M c/pend-ML:M c/pend-M:M  f/block-H:MH     

MH:MH (MH) c/pend-L:MH c/pend-ML:MH f/block-M:MH  e/pend-H:MH     

MH:H (H) c/pend-L:H d/pend-ML:H d/pend-M:H  g/block-MH:H     

H:L (M) a/pend-L:L b/pend-ML:L b/pend-M:L f/block-MH:L      

H:ML (MH) b/pend-L:ML b/pend-ML:ML c/pend-M:ML c/pend-MH:ML      

H:M (MH) b/pend-L:M c/pend-ML:M c/pend-M:M f/block-MH:M      

H:MH (H) c/pend-L:MH c/pend-ML:MH d/pend-M:MH d/pend-MH:MH      

pend-* z z z z z  fh/block* gh/block*  

block-* z z z z z --/requested state   
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its parent DPM controller whenever a requested power 

setting change would change the node’s state.  For example, 

consider the case in which the DPM controller’s state is L:L 

and the left child requests High power.  Granting the left 

child High power would change the node’s state from L to M 

(because H:L averages to M), and this change must be 

requested from the parent DPM controller.  To maintain 

fractal behavior, the node must behave like a single 

computing resource, which would similarly issue a request to 

change its state from L to M. 

The non-root DPM controller either satisfies the request 

directly (if doing so does not change the node’s state) or 

passes along the appropriate request to its parent DPM, with 

only four exceptions.  These four exceptions are situations in 

which satisfying the request would violate our invariant (i.e., 

both children cannot be in state H).  These four exceptions 

are requests for High power when the other child is already in 

state H. In these situations, the DPM controller denies the 

request.
1
 

One unusual state (X:H
F
) and its usage is required for 

verification purposes.  We refer readers interested in this 

subtle issue to Appendix A. 

4.4 Design Scalability 

For purposes of verification, our DPM scheme is 

arbitrarily scalable.   For purposes of performance, there are 

 

 
1 A more efficient solution would treat the request for H as a request for 

MH, but we sacrificed that optimization for simplicity. 

possible scalability issues due to its structure.  With a binary 

tree organization and many computing resources, a request 

that must be communicated to an upper level of the tree 

requires many hops and a potentially long latency.  A 

higher-degree tree would mitigate this problem, but the 

verification tools we use are incapable of verifying the 

smallest scale DPM scheme with a higher-degree tree.   

Despite the binary tree structure, there are three reasons 

why scalability is not a major concern.  First and foremost, 

the latency of DPM itself is not critical.  The computing 

resources continue to execute while waiting on outstanding 

DPM requests.  Second, many requests can be satisfied 

without traveling far up the tree.  Third, our experimental 

results on a real system (Section 9.4) show that, at least for a 

modestly sized system (16 computing resources), latencies 

are reasonable. 

5 Verification of Fractal DPM 
The motivation for our DPM scheme is to enable scalable 

verification.  That is, we can scale the verification to any 

arbitrary number of computing resources, and the effort to 

verify the DPM scheme is independent of the number of 

computing resources.   

In this section, we show the inductive verification process 

of our DPM scheme, which is based on a one-time proof that 

the induction is complete (Section 5.1). The verification 

process includes two steps:  

1. Base case: Verify that the minimum system satisfies its 

power constraints (Section 5.2). 

Table 5.  Specification of Behavior of Root DPM Controller.  

 Bolded entries show states/situations that are specially required to maintain fractal. 

 

 Requests from Left Child 

(requests from right child handled symmetrically) 

Ack from Left 

Child 
Optional 

State ReqL ReqML ReqM ReqMH ReqH   

L:L (L)  f/block-ML:L f/block-M:L f/block-MH:L f/block-H:L   

L:ML (ML)  f/block-ML:ML f/block-M:ML f/block-MH:ML f/block-H:ML   

L:M (ML)  f/block-ML:M f/block-M:M f/block-MH:M f/block-H:M   

L:MH (M)  f/block-ML:MH f/block-M:MH f/block-MH:MH f/block-H:MH   

L:H (M)  f/block-ML:H f/block-M:H f/block-MH:H g/block-L:H  --/X:HF 

X:HF (M)  f/block-ML:H f/block-M:H g/block-X:HF g/block-X:HF  --/L:H 

ML:L (ML) f/block-L:ML  f/block-M:L f/block-MH:L f/block-H:L   

ML:ML (ML) f/block-L:ML  f/block-M:ML f/block-MH:ML f/block-H:ML   

ML:M (M) f/block-L:M  f/block-M:M f/block-MH:M f/block-H:M   

ML:MH (M) f/block-L:MH  f/block-M:MH f/block-MH:MH f/block-H:MH   

ML:H (MH) f/block-L:H  f/block-M:H f/block-MH:H g/block-ML:H   

M:L (ML) f/block-L:ML f/block-ML:L  f/block-MH:L f/block-H:L   

M:ML (M) f/block-L:ML f/block-ML:ML  f/block-MH:ML f/block-H:ML   

M:M (M) f/block-L:M f/block-ML:M  f/block-MH:M f/block-H:M   

M:MH (MH) f/block-L:MH f/block-ML:MH  f/block-MH:MH f/block-H:MH   

M:H (MH) f/block-L:H f/block-ML:H  f/block-MH:H g/block-M:H   

MH:L (M) f/block-L:ML f/block-ML:L f/block-M:L  f/block-H:L   

MH:ML (M) f/block-L:ML f/block-ML:ML f/block-M:ML  f/block-H:ML   

MH:M (MH) f/block-L:M f/block-ML:M f/block-M:M  f/block-H:M   

MH:MH (MH) f/block-L:MH f/block-ML:MH f/block-M:MH  f/block-H:MH   

MH:H (H) f/block-L:H f/block-ML:H f/block-M:H  g/block-MH:H   

H:L (M) f/block-L:ML f/block-ML:L f/block-M:L f/block-MH:L    

H:ML (MH) f/block-L:ML f/block-ML:ML f/block-M:ML f/block-MH:ML    

H:M (MH) f/block-L:M f/block-ML:M f/block-M:M f/block-MH:M    

H:MH (H) f/block-L:MH f/block-ML:MH f/block-M:MH f/block-MH:MH    

block* z z z z z --/requested state  
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2. Inductive step: Verify that larger systems are 

equivalent to smaller systems (Section 5.3). 

Both verification steps are completed using the same 

automated tool, Murφ.  This single-tool verification 

methodology is an important improvement over Fractal 

Coherence [14]—which employs Murφ for the base case and 

an equivalence checker for the inductive step—because the 

use of a uniform tool avoids the need for mistake-prone 

translation from one tool to another.   Based on the results of 

these two verification steps, we can then prove the fractal 

DPM scheme is correct for any arbitrary number of 

computing resources. 

5.1 Proof of Verification Completeness 

  There is a one-time proof (i.e., independent of the number 

of computing resources) that shows the above two 

verification steps are sufficient to inductively verify the 

correctness of DPM schemes with any arbitrary number of 

computing resources.   The proof is very similar to that of 

Fractal Coherence, and we refer the reader to that proof [14] 

instead of replicating it here.  

5.2 Base Case: Minimum System Verification 

  The base case of the inductive proof is minimum system 

verification. For our DPM scheme, the minimum system 

includes two computing resources, one internal DPM 

controller, and one root DPM controller, as shown in Figure 

1. The minimum system is not chosen arbitrarily; it must 

have all different kinds of components in the system to 

ensure the completeness of verification. An example of an 

incomplete minimum system would be a system that includes 

only two computing resources and one root DPM controller. 

Although this system is even smaller than the correct 

minimum system, any further proof based on this system is 

incomplete because a non-root DPM controller may actually 

have spurious actions and those situations would have been 

missed in this incomplete  base case.  

The verification of the minimum system is 

straightforward. We describe the DPM scheme using the 

expressive language in Murφ, and we specify the properties 

we are interested in as invariants. In our model, the invariant 

is that no two computing resources are in state H at the same 

time. Murφ automatically traverses all possible reachable 

states through explicit state enumeration and checks whether 

the property is maintained throughout the entire state space.  

5.3 Inductive Step: Equivalence Verification 

  After verifying the power management of the minimum 

system is correct, we need to show that at each scale the 

system has exactly the same behavior in order to prove that 

the scheme is also correct for larger scale systems. This 

self-similarity feature is called fractal behavior and it is the 

guarantee of correctness when the system scales.  

  To check fractal behavior, we need to perform 

equivalence verification. Specifically, we verify a form of 

equivalence called “observational equivalence,” because we 

care only that each scale of the system behaves the same 

when observed from the outside world; internal actions are 

ignored.  Observational equivalence is transactional in that it 

considers how systems react to inputs but not their timing.  

We verify observational equivalence from two 

perspectives. We refer to one equivalence as “looking 

down,” because it is an equivalence between two children 

observed by a DPM controller parent. We illustrate the 

“looking down” equivalence in Figure 2.  This equivalence is 

to ensure that, when observed from the O1 point in the figure, 

the systems inside the dashed boxes in Figure 2(a) and Figure 

2(b) behave the same. The “looking down” equivalence 

enables us to scale the system downward while maintaining 

the illusion that any larger system behaves the same as the 

single computing resource A in the figure.  

We illustrate the other equivalence, which we call the 

“looking up” equivalence, in Figure 3.  When observed from 

the O2 point, the systems inside the dashed boxes in Figure 

3(a) and Figure 3(b) behave the same. The “looking up” 

equivalence enables us to scale the system upward with the 

guarantee that any larger system behaves the same as 

sub-system B in the figure.  

The overall impact of verifying these two equivalences is 

that any scale of the system behaves the same. 

There are a few tools that perform equivalence checking, 

such as the bisimulator [1] in the CADP toolset [7] used in 

Fractal Coherence.  However, those tools usually do not use 

the same language as Murφ, and the language translation 

process is error-prone. Being able to use the same tool to 

verify both the base case and the inductive step is preferable. 

  
Figure 2.  Observational Equivalence: “looking down” Figure 3.  Observational Equivalence: “looking up” 
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Therefore, we leverage Park et al.’s aggregation checking 

idea [11] to perform the equivalence verification with Murφ. 

The idea was originally introduced to check that an 

implementation of a protocol is consistent with its 

specification. The implementation is a fine-grained 

description of the execution, and the specification is an 

abstraction of the protocol with coarse-grained atomicity. 

The key idea is to use an aggregation function to map an 

implementation state to a specification state by completing 

any committed but incomplete transactions. Then an 

invariant is checked about this mapping to ensure that the two 

are actually consistent. 

We find Park et al.’s aggregation method [11] to be a good 

match for verifying observational equivalence because, by 

executing all committed but incomplete transactions, it hides 

the internal transitions and leaves us only the transitions we 

are interested in. In our DPM scheme, the small system can 

be considered the specification and the large system can be 

considered the implementation.  For example, as shown in  

Figure 2, computing resource A is the specification and 

sub-system A’ is the implementation. Computing resource A 

always has atomic transitions, and sub-system A’ has many 

internal transitions. The commit point in sub-system A’ is 

when any request or reply message arrives at the internal 

DPM controller. After a message passes through this DPM 

controller, the message is in its post-commit stage and needs 

to be processed until the end. The aggregation function is 

designed in a way that it drains out all the committed 

messages in all buffers inside sub-system A’. 

 We perform each equivalence verification using the Murφ 

model of the larger subsystem. Murφ performs the 

equivalence verification automatically.  It is worth 

mentioning that Murφ enables the checking of the 

equivalence to be performed “on-the-fly,” which means the 

verification does not incur any increase in the state space 

compared to the state space of the larger subsystem. That is to 

say, if we can verify the correctness of the larger subsystem 

without a state explosion problem, it is guaranteed that the 

equivalence checking will not incur state explosion either.   

6 Power Management Efficiency 
Our fractal invariant guarantees that a DPM controller’s 

two children are never both at the High power setting.  The 

implication of this invariant at the system level is that the 

system-wide power consumption is upper bounded.  The 

most power that a system with C computational resources can 

consume while maintaining this invariant is (C-1) MH + H.   

That is, C-1 computing resources are at power level MH and 

one computing resource is at power level H.  This result 

implies that, as the number of computing resources 

approaches infinity, the maximum average power of the 

computing resources approaches MH. We prove this in 

Appendix B. 

Maintaining a fractal invariant leads to some situations in 

which our DPM scheme sacrifices performance that a 

non-fractal DPM scheme could achieve.  In Appendix B, we 

prove that our system can end up with the average computing 

resource power approaching MH and, in fact, it is legal for all 

computing resources to be in state MH.  Our DPM scheme 

allows this situation, but it does not permit certain other 

situations in which the system uses the same power.  Clearly, 

if all computational resources are allowed to be in MH, then 

this system-wide power consumption should be legal in all 

situations. 

Consider the examples in Figure 4.  On the left side, we 

have a system in which the average computing resource 

power is MH, and the invariant is maintained.  On the right 

side, the average computing resource power is still MH but 

this system violates the invariant because the bottom-left 

DPM controller has both of its children in state H.  

This illegality is the price we pay for the verifiability of 

our fractal DPM scheme.  These suboptimal situations exist, 

but fortunately they are rare and the inefficiency itself is 

small.  Our DPM scheme would force one of the two leaf 

nodes on the bottom-left of the figure to be in state MH 

instead of H, which is a relatively small performance 

inefficiency.  We quantify this performance impact in our 

evaluation in Section 7. 

7 Evaluation of Abstract System 
In this section, we evaluate an abstract system that consists 

of generic computing resources that request power from the 

DPM scheme.  This evaluation enables us to isolate 

fundamental characteristics of the fractal DPM scheme 

without obscuring them with implementation details.  We 

will experimentally evaluate our fractal DPM scheme as 

implemented in a real system in Section 9.  

The goal of the evaluation in this section is to determine 

whether our fractal DPM scheme does a good job of 

allocating a fixed power budget to computing resources.  One 

can easily design a DPM scheme that never exceeds a power 

budget by simply turning off all of the computing resources; 

clearly, there is more to DPM than just staying within the 

power budget. 

7.1 Simulation Methodology 

We wrote a simple simulator to model a system with a 

parameterizable number of abstract computing resources.  

Each abstract computing resource periodically changes its 

Xmaxi and, as a result, requests a new power setting from its 

parent DPM controller.  The simulator randomly chooses the 

Xmaxi values for each computing resource at each time step 

 
Figure 4.  Example Inefficiency Due to Fractal Invariant 
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and models the behaviors of the computing resources and the 

DPM controllers that were specified in Table 3-Table 5 (e.g., 

changing states, sending requests, granting/denying requests, 

etc.).  The simulator computes the performance of each 

computing resource as a function of the power it is granted by 

the DPM scheme per time step.  We simulate for millions of 

time steps to obtain statistically significant results. 

To quantify our results, we must assign numerical values 

to the power settings (Low-High) and Xmaxi.  We map the 

power settings as: L=5, ML=10, M=15, MH=20, and H=25.  

For Xmaxi, we set it equal to the requested power.  For 

example, if a computational resource requests ML, its 

Xmaxi=10. 

7.2 Performance Modeling 

One challenge in evaluating a DPM scheme is determining 

the performance of a computing resource at a given power 

setting.  For a given computing resource, there are many 

ways it could use its power allocation.  Two computing 

resources at the same power setting could run the same 

software but achieve different performance based on how 

they use that power.  For example, consider two processor 

cores, both of which are allocated a low power setting.   One 

core could stay within its power allocation by using all of its 

resources but at a lower clock frequency, while the other core 

stays within the same power allocation by keeping a higher 

clock frequency but disabling some of its resources.   

To avoid muddying the evaluation with the specific details 

of how each computing resource uses its power allocation, 

we abstract away the relationship between performance and 

power.  We consider a computational resource’s performance 

to be a function of its power setting and its Xmaxi, and we 

consider two functions that are representative of typical 

performance/power relationships. The two functions are: 

1 = max , + , ℎ 	 = 10 

2 = max ,  

The first performance equation represents a system in 

which adding power leads to decreasing marginal 

performance benefit (e.g., using more power to enable a 

faster core clock frequency helps performance but eventually 

performance becomes memory-bound).  The second equation 

offers linear performance benefit (e.g., ideal 

voltage/frequency scaling).  In real systems, performance 

would likely fall between these two performance curves. 

7.3 Comparisons 

Rather than compare against a vast number of prior DPM 

schemes—and try to match a wide range of assumptions 

made in these schemes—we compare against the ideal case 

of an (unimplementable) oracle.  The oracle exhaustively 

searches for the best possible allocation of power settings for 

all of the computing resources.  The oracle satisfies the same 

system-wide power invariant that results from the fractal 

DPM’s fractal invariant, but the oracle is not constrained by 

the fractal invariant.  The oracle can perform both power 

allocations shown in Figure 4, whereas the fractal DPM can 

only perform the allocation on the left side of the figure. Our 

fractal DPM scheme obviously cannot perform as well as the 

oracle, but our goal is to show that its performance is close to 

the oracle. 

7.4 Results 

In Figure 5, we plot the CDF of the percentage 

performance loss of fractal DPM, with respect to the oracle 

DPM.  Figure 5a and Figure 5b correspond to perf1 and 

perf2, respectively.  The modeled system has 8 

computational resources.
2
   

We observe that, in the majority of the time steps (>72% 

for both perf1 and perf2), fractal DPM achieves the exact 

same performance as the oracle.  When fractal DPM does fall 

short of the oracle’s performance, the performance gap is 

never more than 37% for perf1 and 46% for perf2.  The 

discrepancy between fractal DPM and the oracle is somewhat 

greater for perf2, because perf2 models greater performance 

 

 
2 We cannot, in a reasonable amount of time, simulate the oracle DPM for 

more computational resources. 

  
(a) Perf1 (b) Perf2 

Figure 5.  Percentage performance loss of fractal DPM compared to oracle DPM 
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at higher power states, and thus being at a lower power state 

(to maintain the fractal invariant) is somewhat more costly. 

Overall, these results confirm that there are few situations in 

which fractal DPM sacrifices performance and that, in these 

situations, the amount of performance sacrificed is relatively 

small. 

8 Implementation  
An abstract implementation and evaluation can provide 

insight, but the true merit of a DPM scheme can only be 

confirmed by implementing it in a real system and evaluating 

the implementation.   We already know that the scheme is 

correct and has no fundamental performance limitations, yet 

real systems can reveal practical issues—such as latencies 

and bandwidths—that are ignored in our abstract evaluation. 

We have implemented our fractal DPM scheme across two 

8-core x86 machines from AMD, as illustrated in Figure 6.  

There are many different ways in which our DPM scheme 

could change the power allocations to cores.  For our 

experiments, we chose dynamic voltage/frequency scaling 

(e.g., as in Isci’s well-known scheme [8]).  That is, when a 

core requests a change in power, the DPM adjusts the core’s 

voltage and frequency accordingly. Dynamic 

voltage/frequency scaling (DVFS) offers perhaps the most 

intuitive relationship between power allocation and 

performance, which is why we chose it despite some recent 

studies showing that it might not be the best mechanism for 

power management [4].  We map L, ML, M, MH, and H to 

the following frequencies (all in GHz): L=1.4, ML=2.1, 

M=2.7, MH=3.3, and H=3.6.  

 Each machine is divided into 4 voltage/frequency 

domains, i.e., voltage/frequency can be adjusted at the 

granularity of a pair of cores but not on a finer, per-core 

granularity.  A computing resource is thus a pair of cores in 

this implementation.  Recall, though, that our fractal DPM 

can operate at any granularity, so operating at a 2-core 

granularity poses no problems.  Each machine runs Linux, 

and we implement the DPM controllers as daemons that run 

on the machines.  (Note that there is some asymmetry in 

mapping DPM controllers to machines.)  Communication 

between cores and DPM controllers and between DPM 

controllers is performed over sockets.   

We consider one minor optimization of the fractal DPM 

implementation in which a core pair that has a power request 

denied re-requests a power setting that is one level below the 

denied request (instead of just staying at its current setting).  

In our experimental results, we denote this scheme as 

OptFractalDPM.  It is important to note that making core 

pairs re-request power settings does not involve changing the 

DPM scheme; the DPM scheme is orthogonal to the 

decisions the core pairs make when requesting power levels.  

Hence, OptFractalDPM preserves the scalable verifiability of 

FractalDPM. 

9 Evaluation of Implementation 
We have several goals in this experimental evaluation.   

• Compare the power and performance of fractal DPM 

against an unimplementable oracle DPM scheme that 

always assigns the optimal power levels to core pairs. 

• Compare the power and performance of fractal DPM 

against a provably correct power management scheme 

that statically sets all cores to a given power level.   

• Determine the latency to service requests for new 

power levels 

9.1 Experimental Methodology 

In all of our experiments, we run multithreaded 

benchmarks on both machines.  On our particular machines, 

the power efficiency is, perhaps surprisingly, largely 

independent of the benchmark itself.  That is, the optimal 

power setting for a core pair is almost entirely a function of 

the duty cycle of that core pair rather than which benchmark 

the core pair is running when it is not idle [4].   That is, if a 

core pair runs benchmark B1 for 40% of its time and is idle 

the other 60% of its time, it will have the same optimal power 

setting if it instead ran benchmark B2 for 40% of its time and 

was idle for the other 60%.   

For experimental consistency, we chose a single 

2-threaded application, bodytrack, from the Parsec suite [2], 

and we run this application on every core pair.  We make 

each core pair a “cset” and pin applications to csets so that 

applications run to completion on the desired core pairs.  

Over the duration of each experiment, we vary the duty cycle 

of each core pair by varying the idle time between arrival 

times of new bodytrack jobs.  We experimented with more 

sophisticated workloads with different benchmarks and 

combinations of different benchmarks, but the results (not 

shown) were nearly identical. 

Before running our experiments, we ran each benchmark 

(i.e., interval of time with bodytrack running with a given 

duty cycle) to determine the optimal power setting for a core 

pair running that benchmark.  We define the optimal power 

setting as the power setting that maximizes the 

energy×delay
2
 product. Hence, we developed 5 benchmarks, 

each of which has a unique power setting under which it runs 

optimally. We generate a random sequence of these 

benchmarks for each core pair before our experiments. We 

then use the same sequences of benchmarks for our 

experiments on each of the DPM schemes to ensure that the 

 
Figure 6.  Implementation on Real System 
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same amount of work is done in each experiment. We 

disabled c-states on the machines, to prevent the hardware 

from choosing to run at a lower frequency than the one we 

wish to run at. 

  Because the results are sensitive to how the core pair 

decides what power level to ask for and because this decision 

policy is orthogonal to our work here, we eliminate its impact 

by having core pairs ask for the pre-determined optimal 

power setting of a benchmark before running it.   

In all experiments, we measure power with a “WattsUp?” 

power meter between the outlet and our machines. 

9.2 Comparison to Oracle Power Management 

As in our abstract evaluation in Section 7, we seek to 

compare fractal DPM to an unimplementable oracle DPM.  

The oracle always makes the ideal allocation of power to the 

core pairs, and the oracle has a pre-memoized set of decisions 

so that at runtime it consumes minimal latency and power.   

(Fractal DPM takes time and power to make decisions at 

runtime.)  Comparing fractal DPM to this oracle shows how 

much the fractal DPM sacrifices in order to be both 

implementable and verifiable.   

We plot the results of this experiment in Figure 7.  We 

compare oracle, fractal DPM, and the optimized fractal 

DPM, and the comparisons are with respect to delay, energy, 

and ED
2
.  All results in the figure are normalized to a trivially 

correct DPM scheme that statically sets all cores to the MH 

power level.  The results show that there is indeed a gap 

between Oracle and fractal, but that the ED
2
 gap is small 

(approximately 8% for fractal and 2% for the optimized 

fractal).  These results corroborate the results from our earlier 

abstract evaluation. 

9.3 Comparison to Static Power Management 

In order to illustrate the efficacy of fractal DPM in 

optimizing power-efficiency, we compare it to schemes that 

statically allocate fixed power levels to all cores.  Static 

allocation schemes are trivially correct in maintaining 

system-wide power invariants.  We are unaware of any other 

scalable power management scheme that is provably correct. 

The results of this comparison are in Figure 8.  The figure 

compares fractal DPM and the optimized fractal DPM to 

static settings of ML, M, MH, and H.  (The static-L scheme 

does so poorly that, if included in the graph, it obscures the 

more interesting trends.)  The comparisons are with respect 

to the oracle DPM, i.e., smaller values are better.  The figure 

shows that, in terms of ED
2
, the fractal and optimized fractal 

achieve better results than the static schemes.  The static-ML 

and static-M schemes achieve impressive energy savings, but 

their performance is quite poor.  The static-H scheme 

achieves excellent performance but at a steep energy cost. 

9.4 Latency 

One possible concern with fractal DPM is whether 

requests will take too long to be serviced.   This latency 

includes the communication time between the core and its 

parent DPM controller and possibly between the parent DPM 

controller and its ancestors.  This latency also includes the 

time required for the DPM controller daemons to wake up 

and determine what actions to take.  Response time is not 

terribly critical since it is never on the critical path of 

execution (i.e., a core pair never stops executing while 

waiting for a new power level), but this latency is on the 

critical path to changing the power level of a core pair. 

In Figure 9, we plot the results of performing a large 

number of power setting requests in our implementation.  

These results are admittedly a function of our particular 

hardware platform and operating system, but they give some 

idea of what response times are likely to be.  The figure is the 

 
Figure 7.  Comparison to Oracle 

 

Figure 8.  Comparison to Static DPM 

 

Figure 9.  Fractal DPM Response Time 
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CDF of the response time, and we observe that the vast 

majority of service times are within 1 msec.  Almost 100% of 

requests are serviced within 3 msec.  For perspective, a 

round-trip of datagram messages on our system—sending 

and receiving a message—takes  0.6 msec on average. 

10 Related Work 
There are two pieces of prior work that are most related to 

our work here.  The first is Lungu et al.’s research on 

verifiable DPM for multicore processors [9].  They observed 

that DPM schemes (prior to our work here) cannot be verified 

with model checkers for more than a handful of cores.  They 

showed the relationship between the number of power 

settings and the state space explosion, and they proposed 

designing the DPM scheme at the granularity of a handful of 

cores.  There have been many other DPM schemes, including 

[10][8][6], but we are unaware of any other DPM scheme 

that considers verification. 

The other work that inspires this work is fractal coherence 

[14].  The authors showed how to use the fractal design to 

enable scalably verifiable cache coherence protocols for 

multicore processors.  A DPM protocol has similarities to a 

coherence protocol, but there are also key differences 

including, most notably, the invariants to be verified.  We 

have leveraged this prior work for the idea of fractal design 

and for the proof of how a fractal design enables an inductive 

verification in two steps.  We chose a simpler and more 

robust methodology for performing the equivalence 

verification (inductive step).   

11 Conclusions 
We have shown how to design the first dynamic power 

management protocol that can be formally verified for any 

number of computational resources.  The key to scalable 

verification is the use of a fractal design methodology that 

enables an inductive proof of correctness.  We have 

developed one concrete implementation of the fractal DPM, 

and one avenue of future work is to extend fractal DPM to 

larger scale systems, including datacenters. 

Our analytical and experimental results both show that the 

fractal DPM protocol sacrifices only a small amount of 

performance compared to an oracle that makes optimal 

decisions at every time step, and we believe this sacrifice is 

worthwhile in order to achieve confidence is the DPM 

protocol’s behavior. 
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 Appendix A: Special State in DPM Controller 

In Section 4.3.2, we specified the DPM controller 

behavior, which includes an unusual state and transition.  

Namely, the controller can, at any time, optionally choose to 

transition from state L:H to state X:H
F
 and vice versa.  This 

seemingly useless state and transition are required for 

purposes of verifying the “looking up” equivalence (refer to 

Section 5.3). 

Consider the example in Figure 10.  In both halves of the 

figure, the bottom left computational resource requests High 

power.  Its parent DPM then requests MH, because a 

combination of H with the right child’s M averages to MH.  

In Figure 10a, the shaded DPM controller grants the request 

because its new state, MH:H, is legal.  In fact, in Figure 10a, 
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there exists no state in which the shaded controller (and thus 

subsystem B) denies a request for MH.   

 In Figure 10b, however, the shaded DPM controller 

denies the request for MH.  If it granted the request, its state 

would be MH:H, which averages to H.  Then the shaded 

DPM’s parent would have two children in state H, which is 

illegal.  Thus subsystem B’ has a state—the state in which it 

rejects a request for MH—that subsystem B does not have.   

To make B and B’ equivalent, we add a new state to DPM 

controllers, called X:H
F
.  This state denotes a DPM controller 

whose right child is in H and that will deny a request for MH 

from its left child.  By setting the shaded DPM controller in 

Figure 10a to this new state, B is equivalent to B’.   

A crucial insight is that we added this DPM controller state 

to enable verification and not because we ever want to use it 

in the small system of Figure 10a.  However, it has to exist 

and be reachable in order for subsystem B to have a state that 

is equivalent to the state of B’ in Figure 10b. 

 

Appendix B: Chip-Wide Power Consumption 
Definitions: Let Tn be the set of all possible binary trees with 

n computational resources that that satisfy our fractal 

invariant.  For a tree t∈Tn, let C(t)={c1, … cn} be the set of 

computational resources in t. The power consumption of tree 

t∈Tn is:			 = ∑ , and we denote the power of a 

computational resource as one of {L, ML, M, MH, H}.  We 

define Pequiv(t) as the average power of the children of t as 

specified in Table 1.  We define = max ∈ .  

We denote replacing a computational resource ci in tree t with 

an arbitrary tree s with m computational resources as: 

	→ ∈ .  Lastly, we define 
̂ ∈ 	 ℎ	 ℎ 	 = 	 	 , … , = .  

Now we inductively prove that ∀ 	 = ̂ . 

Base case: Pmax(1) = H, which satisfies the constraint that 

1 = ̂ . 

Inductive step: Assume = ̂ .  

Let  be an arbitrary element of Tk+1. Then, ∃	 ∈
	such	that	 = → ̅ 	 ∈  and such that 

Pequiv( ̅ )=P( ).  This is true by the “looking down” 

observational equivalence because, for any tree t’, there 

exists an observationally equivalent tree t from which it can 

be scaled—by replacing a computational resource ci with a 

tree ̅ with two computational resources—such that none of 

the states of the nodes of t are changed.   That is, ̅ has an 

average power equal to that of ci. 

There are two cases to consider: 

Case #1: P(ci)≠H: 

From Table 1, the possible power settings that average to 

any non-H state always sum to be less than or equal to twice 

the state they average to. So, since the power of the 

computational resources of ̅ average to , the sum of 

their power states will always be less than or equal to twice 

.  Thus: 

≤ − + 2   

≤ +  

Given that the highest power state that ≠  can be 

in is MH, and by the inductive step,  

≤ + ≤ + = ̂  

≤ ̂  

Because  was an arbitrary element in Tk+1, then 
̂ = 	 + 1 . 

Case #2: P(ci)=H: 

From Table 1, for a tree satisfying our invariant, the only 

power settings that average to H=P(ci) are H:MH and MH:H.  

Thus: 

= − + +   

By the inductive step, 

= + ≤ + = ̂  

≤ ̂  

Again, because  was an arbitrary element in Tk+1, 

 + 1 = 	 ̂ = − 1 +H.∎ 

 

 

 
Figure 10.  Observational Equivalence: “looking up” 

 


