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ABSTRACT
Dynamic power management features are now an integral
part of processor chip and system design. Dynamic volt-
age and frequency scaling (DVFS), core folding and per-
core power gating (PCPG) are power control actuators (or
“knobs”) that are available in modern multi-core systems.
However, figuring out the actuation protocol for such knobs
in order to achieve maximum efficiency has so far remained
an open research problem. In the context of specific system
utilization dynamics, the desirable order of applying these
knobs is not easy to determine.

For complexity-effective algorithm development, DVFS,
core folding and PCPG control methods have evolved in a
somewhat decoupled manner. However, as we show in this
paper, independent actuation of these techniques can lead to
conflicting decisions that jeopardize the system in terms of
power-performance efficiency. Therefore, a more robust co-
ordination protocol is necessary in orchestrating the power
management functions. Heuristics for achieving such coor-
dinated control are already becoming available in server sys-
tems. It remains an open research problem to optimally
adjust power and performance management options at run-
time for a wide range of time-varying workload applications,
environmental conditions, and power constraints.

This research paper contributes a novel approach for a sys-
tematically architected, robust, multi-knob power manage-
ment protocol, which we empirically analyze on live server
systems. We use a latest generation POWER7+ multi-core
system to demonstrate the benefits of our proposed new coor-
dinated power management algorithm (called PAMPA). We
report measurement-based analysis to show that PAMPA
achieves comparable power-performance efficiencies (rela-
tive to a baseline decoupled control system) while achieving
conflict-free actuation and robust operation.
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1. INTRODUCTION
Modern multi-core systems incorporate support for dy-

namic power and thermal management. These features are
controlled by algorithms implemented in the system firmware-
software stack, governed by real-time information like pro-
cessor utilization [27, 31]. The available power control knobs
have become progressively multiple: e.g. dynamic voltage
and frequency control (DVFS), followed by core folding1 and
subsequently supported by per-core power gating (PCPG).
As such, independently developed algorithms to actuate such
knobs have evolved and been experimented with in a some-
what decoupled manner when it comes to first generation
power-managed systems. A key advantage of decoupled power
management is that individual algorithms (e.g. DVFS and
PCPG) are less complex and independently verifiable. How-
ever, independent operation of DVFS and PCPG can result
in interference that leads to undesirable effects on perfor-
mance and/or power consumption. For example, a decou-
pled approach can waste precious time thrashing between
states as PCPG turns cores on and off and DVFS frequency
fluctuates, each separate control system striving to maintain
a separate set point as they drastically affect each other’s
input. Separate dynamic controllers can easily miss settling
into “sweet spots” for optimal control.

In this paper, we argue in favor of a coordinated, in-order
actuation of DVFS and core-folding (supported by PCPG)
to reduce the potential interference across the two techniques

1We use the term core folding to refer to consolidation of
work into fewer cores to save power. See Section 2.
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and hence to create a more robust framework for power man-
agement in current generation chip multiprocessors (CMPs).
It is important to note that for this class of servers, “more
robust” pertains to high performance and high availability
under a wide range of conditions, and does not guarantee
more power savings.

The argument for coordinated power management is ad-
dressed in prior works [9, 10, 28]. However, to the best of
our knowledge, our work is the first published research eval-
uating these techniques on a real hardware testbed in which
both DVFS and PCPG are operable. Specifically, the key
contributions of this work are:

• We expound on the potential drawbacks of the decou-
pled DVFS and PCPG actuation approach. These un-
wanted effects are, in part, the result of the individual
operation of the DVFS and PCPG algorithms.

• We present a detailed measurement-based evaluation
and comparison of product-level power management
policies available in a modern multi-core system.

• We present PAMPA, a Power-Aware Management of
Processor Actuators algorithm, capable of attaining power-
performance efficiency comparable to (although not nec-
essarily better than) the most aggressive power man-
agement approach, while achieving conflict-free actu-
ation of the power management activities. PAMPA
implements a coordinated control of the DVFS and
PCPG knobs, which reduces the potential interference
between them. Even though it jointly operates DVFS
and PCPG, PAMPA is still an extremely simple algo-
rithm which just requires access to on-line core-level
utilization information. PAMPA does not require any
kind of off-line pre-processing and performs very light-
weight computation to make its decisions.

• We implement and evaluate PAMPA in a real commer-
cial server, a 16-core POWER7+ system. Therefore,
results presented in this work are not based on any
simplifying assumptions and include all possible over-
heads and constraints associated with the actuation of
DVFS and PCPG.

PAMPA’s ultimate goal is to dynamically operate DVFS,
core folding and PCPG in a coordinated fashion, guided by
run-time processor and workload variations. In contrast to
most of the utilization-based power management algorithms
deployed in today’s systems, PAMPA adopts a novel ap-
proach to guide its decisions —it dynamically “detects” sit-
uations in which an application may be bound by single-
thread-performance or throughput and actuates the power
management knobs accordingly. When evaluated on a real
AIX/POWER7+ system, PAMPA exhibits power-performance
efficiencies for a set of throughput-oriented and single-thread-
performance-sensitive workloads comparable to the most ag-
gressive power management approach. At the same time,
PAMPA avoids excessive performance degradation in cases
where the independent DVFS and PCPG operation results
in conflicting decisions.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces background concepts and describes our
baseline power management setting. Section 3 outlines our
experimental methodology. Section 4 illustrates the prob-
lem of destructive interference between DVFS and PCPG
actuators with measured results. Section 5 presents distinct
scenarios for optimizing latency and/or throughput. Sec-

tion 6 presents the Power-Aware Management of Processor
Actuators algorithm (PAMPA), which is evaluated for the
SPECpower benchmark in Section 7.1 and for highly-parallel
scientific applications in Section 7.2. Finally, Section 8 pro-
vides a summary of related work and Section 9 presents our
conclusions.

2. BACKGROUND
Dynamic voltage and frequency scaling (DVFS) is a key

function supported in first generation power-managed sys-
tems [27, 34]. It provides an effective mechanism for power
and thermal management, by enabling the system to adjust
voltage and/or frequency dynamically. Core folding consti-
tutes a system software-level technique in which one or more
processor cores are temporarily removed from the set of “us-
able” cores and their assigned tasks are reallocated to other
(not folded) cores. Without the support of per-core power
gating (PCPG), core folding alone is able to save consider-
able active power through built-in features like clock-gating
or just turning clocks off for idle cores. Later, as PCPG be-
came available [17, 33], core folding supported by PCPG was
able to garner significantly more savings in power. Folded
cores are not accessible from the operating system sched-
uler standpoint, and hence can be power gated to virtually
eliminate all power (leakage + active).

In this work, we use a current generation POWER7+ [33]
based system as the evaluation platform for quantifying the
benefit of the PAMPA algorithm. Figure 1 shows the in-
teraction and responsibilities of the EnergyScale microcon-
troller [7, 12, 13], Hypervisor, operating system (OS) and
processors in a typical POWER7+ system. DVFS is au-
tomatically actuated when the microcontroller is set to the
Dynamic Power Save (DPS) mode. In our study, we build
upon a previous generation DVFS algorithm (core-pool) [29]
to construct our own baseline DVFS control logic. The core-
pool algorithm varies processor frequency and voltage based
on the utilization of the system’s processors. It employs
two utilization thresholds: thresholdactive determines which
processor cores are idle (those with utilization values below
this threshold are considered inactive) and thresholdslack de-
termines which cores exhibit enough intermittent idle time
(slack) among the active ones. The algorithm then computes
the ratio of the core count below the slack threshold to the
total active cores, which is used to determine whether to in-
crease, decrease, or do not change the processor frequency
—decisions are made every 32 ms [15, 23].

In addition to DVFS, EnergyScale-ready OSs can also take
advantage of core folding supported by PCPG to virtually
eliminate power consumption in idle cores, when feasible.
In this work, we study the efficacy and robustness of co-
ordinated management protocols involving DVFS and core
folding-with-PCPG, assuming an operational environment as
depicted in Figure 1. We construct a baseline core fold-
ing/PCPG control algorithm which dynamically scales the
number of cores needed in proportion to the overall pro-
cessor utilization. We follow an approach similar to the
one followed in the AIX OS [16]. After determining the
number of needed cores, the ones that remain unused (or
“empty”) are folded and the POWER Hypervisor [7] is no-
tified to exploit special purpose idle states available on se-
lected POWER7/POWER7+ systems. In our modeled ex-
periments, the Hypervisor switches each folded core to sleep
mode, which powers off the core as well as its private L2
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cache [33]. Core folding-related decisions are made every sec-
ond by the OS scheduler. For the rest of the paper, we refer
to core folding and its consequent PCPG action as “PCPG”.

In this work, we purposely deploy the two algorithms that
constitute our decoupled power management baseline at dif-
ferent levels —the core folding and PCPG algorithm at sys-
tem software level, and the DVFS algorithm at the Ener-
gyScale microcontroller level— in order to mimic a decoupled
power management scenario. It is important to note that
these are expert-driven algorithms highly-tuned to improve
power-performance efficiency. In other words, our decou-
pled power management baseline constitutes a highly power-
performance efficient scenario and it is considered the most
aggressive approach.

Figure 1: Organization and interaction of the power man-
agement components in a POWER7+ system.

3. METHODOLOGY
In this work, we present the Power-Aware Management

of Processor Actuators algorithm (PAMPA) which aims to
provide robust chip-level power management by coordinating
the operation of DVFS, core folding and PCPG. In this con-
text, our experimental system consists of an IBM POWER7+
system where the PAMPA algorithm operates at OS level
(Figure 2). PAMPA collects on-line hardware events infor-
mation from the PM RUN CYC performance counter avail-
able in POWER7+ [26]. PM RUN CYC counts the non-idle
processor cycles at physical thread-level. In other words,
it filters out those processor cycles during which a particu-
lar physical thread is idle and, therefore, constitutes a suit-
able proxy to estimate physical thread-level utilization. We
then average the utilization of all physical threads in each
core to estimate core-level utilization. PAMPA also con-
nects to the EnergyScale microcontroller through the IBM
Automated Measurement of Systems for Temperature and
Energy Reporting software (AMESTER) [12, 22], to adjust
the processor-level frequency (DVFS). In addition, PAMPA
also actuates core folding at OS level, with its consequent
PCPG action at Hypervisor level. It is important to note
that the POWER7+ system used in our experiments also
supports per-core dynamic frequency scaling (DFS). In this
work, however, we consider processor-level DVFS (along with
PCPG) and defer the use of per-core DFS to future work.

The system has two IBM POWER7+ processors [33] run-
ning at 4.088 GHz (nominal) and 64 GB of DDR3 SDRAM.
Processor frequency can be increased above its nominal value
—the turbo mode [12]. Each POWER7+ processor is com-
posed of eight cores, each one capable of four-way simulta-

Figure 2: Experimental system.

neous multi-threading (SMT) operation. Therefore, the two
POWER7+ processors provide a total of 64 hardware (or
physical) threads. Each core has access to a private 256-KB
L2 cache and to a local 10-MB L3 region. Eight L3 regions
constitute a 80-MB on-chip L3 cache (local L3 regions pro-
vide low-latency access to the cores). In addition to its pri-
vate L2 cache, a core can also obtain data from other cores’
L2 and L3 caches through the coherence fabric.

The platform runs IBM AIX 7.1 OS. We use the SPEC-
power ssj2008 benchmark suite [1], a subset of the PAR-
SEC 2.1 benchmarks [4] and the CoMD and Lulesh applica-
tions [11, 20]. PARSEC does not officially support the AIX
operating system, so only a handful of the benchmarks were
run on the AIX/POWER7+ system. We verify the repeata-
bility of our study by experimenting with multiple runs for
each benchmark.

4. DECOUPLED DVFS AND PCPG
DRAWBACKS

Today’s system designers advocate for decoupled power
management approaches in which the responsibility of power
management algorithms is shared between the system soft-
ware (e.g. the operating system) and the power management
firmware, operating independently of one another. There
are two main arguments in favor of the use of decoupled
power management policies [24]. First, individual DVFS and
PCPG control algorithms can be less complex compared to
an algorithm which jointly operates both knobs. In addition,
DVFS and PCPG exhibit different transition time overheads,
which make these techniques suitable to track short-term
and long-term trends, respectively. Therefore, both tech-
niques require independent actuation to exploit their differ-
ent timescale granularities. In this scenario, it is essential
to define clear protocols to guide the actuation of the power
management techniques. For example, in the presence of
variations in processor utilization, should we begin scaling
frequency or would it be better to power cores on/off? To
illustrate the implications of this kind of decisions, we exe-
cute the SPECpower benchmark [1] and one multi-threaded
application (Fluidanimate) from the PARSEC benchmark
suite [4] on our AIX/POWER7+ testbed platform. For the
sake of this study, we construct a baseline scenario where
both DVFS and PCPG operate independently in a decou-
pled way. As we explain in Section 2, we build two algo-
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rithms, one for DVFS control and one for PCPG control.
Figure 3a presents the performance (number of operations
per second or ssj ops), system power and power-performance
efficiency (ssj ops/Watt) for the different SPECpower load
levels (100% to 10%) when this benchmark is executed on
our AIX/POWER7+ system with both DVFS and PCPG
enabled. The results are normalized to the same execution
in which only PCPG is enabled. When both power reduction
techniques are accessible, the system power is significantly
reduced as the load decreases, with no performance degrada-
tion. In other words, the operation of DVFS and PCPG im-
proves the power-performance efficiency for the SPECpower
benchmark over the same scenario where only PCPG is en-
abled. Figure 3b presents the performance (execution time
speedup), system power and power-performance efficiency
for the Fluidanimate application when it is executed with
different numbers of threads. As in the SPECpower case,
the results correspond to the execution with both DVFS and
PCPG enabled (using our own baseline algorithms) and are
normalized to the case where only PCPG is enabled. In this
case, we observe that the availability of DVFS (in addition
to PCPG) does not improve power-performance efficiency.
Even worse, it severely degrades performance in all the cases
(8, 16, 32 and 64 threads). Clearly, the SPECpower and Flu-
idanimate benchmarks present different characteristics which
mislead the power management algorithms in the latter case.

(a) SPECpower benchmark

(b) Fluidanimate benchmark

Figure 3: SPECpower and Fluidanimate benchmark execu-
tions on a 2 × POWER7+ based system (16 cores total).
DVFS, core folding and PCPG capabilities are enabled. The
results are normalized to the same system in which only
PCPG is enabled (no DVFS). SPECpower executions are
calibrated to the same maximum sustainable throughput.

To understand the reasons behind the behaviors presented
in Figures 3a and 3b, we monitor how the number of turned-
on cores and processor frequency change during the execu-
tion of SPECpower and Fluidanimate as a consequence of
our baseline, decoupled DVFS and PCPG algorithms opera-
tion. Figure 4a presents the number of turned-on cores and

processor frequency for the SPECpower run. As we can ob-
serve, the system starts scaling frequency down as the load
decreases. This is done by the DVFS algorithm, indepen-
dently of the PCPG algorithm operation. The frequency re-
duction keeps cores’ utilization close to 100% (not shown in
the figure), which prevents the PCPG algorithm from kick-
ing in. At the 20% load level, the cores’ utilization is so low
that the PCPG algorithm starts folding and power gating
cores. Figure 4b presents the number of turned-on cores and
processor frequency for the Fluidanimate run. This appli-
cation exhibits a high level of parallelism. As a result, the
OS balances the running application threads across as many
cores as possible. From the standpoint of the PCPG algo-
rithm, the processor is quite highly utilized, and therefore
it keeps as many cores turned-on as needed. Because the
PCPG and DVFS algorithms operate independently of one
another, they may also use different thresholds (or even dif-
ferent logic) to guide their decisions. As a result, the DVFS
algorithm“sees” lower core utilization levels compared to the
PCPG algorithm and consequently scales frequency down —
in this case to its minimum value (2.2 GHz). This action has
the undesirable consequence of a severe performance degra-
dation. As we can observe from this simple experiment, the
independent operation of DVFS and PCPG opens up con-
cerns about the robustness of such decoupled power manage-
ment approaches.

(a) SPECpower benchmark

(b) Fluidanimate benchmark

Figure 4: Number of turned-on cores and processor fre-
quency for the SPECpower and Fluidanimate executions.
This is the result of the operation of DVFS and core folding
with PCPG on our AIX/POWER7+ system.

5. PERFORMANCE AND THROUGHPUT
AWARENESS

The two main arguments in favor of the use of decoupled
power management policies are the simplicity of indepen-
dent algorithms and the possibility of exploiting their dif-
ferent transition time overheads. In this work, we approach
this matter from a different angle, which is not covered in
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prior art: DVFS and PCPG are also suitable to differently
exploit power management depending on if an application’s
current execution phase is single-thread-performance bound
or throughput bound. To illustrate this, we define the follow-
ing three distinct scenarios when the processor cores’ utiliza-
tion is observed at run-time:

• Scenario A: all the turned-on cores are highly
utilized. This situation indicates that the application
may be either traversing a single-thread-performance
bound or throughput bound execution phase. Either
scaling frequency up or turning on an extra core may
lead to performance or throughput improvement, re-
spectively. Empirical evidence shows that if all the
turned-on cores are highly-utilized, applications bene-
fit more from unfolding an extra core than from scal-
ing frequency up. Opening up cores will likely provide
better performance by allowing the OS to distribute
threads to additional cores. Increasing frequency alone
cannot improve performance if the core is overloaded.
This scenario is presented in Figure 5a where, on a hy-
pothetical 8-core processor, four cores are turned on
and are highly utilized and four cores are turned off.

• Scenario B: some turned-on cores are highly uti-
lized. In this case, the application is likely bound by
single-thread performance. Otherwise, if the applica-
tion were bound by throughput, we should expect the
other (not fully utilized or empty) cores to become uti-
lized by the application. Scaling frequency up should
lead to performance improvement. This scenario is pre-
sented in Figure 5b where three cores are highly uti-
lized, one core is low utilized, two cores are empty and
two cores are turned off.

• Scenario C: all the turned-on cores are low uti-
lized or empty. Finally, in this case the cores exhibit
enough intermittent idle time (slack) due to, for ex-
ample, intensive I/O activity. Either scaling frequency
down or turning one or more cores off should lead to
chip power reduction with minimal (or no) performance
impact. Empirical evidence shows that reducing fre-
quency first and then powering cores off lead to the best
results when all the turned-on cores are low utilized or
empty. Frequency and voltage decrease provide the
best power savings due to approximately cubic reduc-
tion in power and their lower actuation latency com-
pared to PCPG, especially if that decision is wrong and
has to be reversed quickly. This scenario is presented
in Figure 5c where five cores are low utilized, two cores
are empty and one core is turned off.

These scenarios are easier to handle when the knobs are
jointly available, because they have to be coordinated fol-
lowing a particular order (protocol) regardless of their differ-
ent timescale granularities. For example, under a decoupled
power management control, the OS may decide to unfold and
turn on some cores in scenario A. This decision may result in
a reduction in utilization which leads the processor to scale
the frequency down, potentially hurting performance.

This simple analysis of some potential scenarios that we
can observe on a chip multiprocessor is leveraged to help
DVFS- and PCPG-related decision making and constitutes
the basis of the Power-Aware Management of Processor Ac-
tuators algorithm (PAMPA) presented in the next section.

(a) Scenario A

(b) Scenario B

(c) Scenario C

Figure 5: Plausible scenarios that can be leveraged to help
power management decisions.

6. PAMPA ALGORITHM
Based on the core utilization scenarios described in Sec-

tion 5, we devise the Power-Aware Management of Processor
Actuators (PAMPA) algorithm. PAMPA’s main characteris-
tic is the coordinated operation of the available power man-
agement techniques (e.g. DVFS and PCPG) to reduce the
potential interference between them. At run-time, PAMPA
collects core-level utilization information to determine if the
running application is traversing any of the scenarios de-
scribed in Section 5. Based on this characterization, PAMPA
decides if DVFS and/or PCPG have to be actuated and how.
Core-level utilization is estimated using the PM RUN CYC
performance counter available in POWER7+ [26], as we ex-
plain in Section 3.

PAMPA is an extremely simple closed-loop control algo-
rithm, which is triggered every T milliseconds. It can be
deployed either at software or hardware level with the only
condition that it requires a holistic view of the processors as
well as access to the power management actuators (DVFS,
PCPG). This means that in the case of a virtualized en-
vironment, with multiple OSs sharing a pool of processors,
PAMPA has to be implemented in the software layer clos-
est to the processors. The testbed used in this work is an
AIX/POWER7+ system, in which we envision PAMPA im-
plemented at Hypervisor level, the virtualization layer in
IBM’s Power Systems. Due to lack of access to propri-
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etary Hypervisor code, our research PAMPA prototype is
developed in user space with complete access to the power
management knobs and processor sensors. Figure 6 presents
PAMPA’s flowchart, where the parts of the algorithm that
handle the three different scenarios are demarcated by dashed
boxes.

Figure 6: PAMPA algorithm.

6.1 Scenario A
The top part of the flowchart presented in Figure 6 eval-

uates if all the turned-on cores are highly utilized. If this is
the case, the application may be either traversing a single-
thread-performance bound or throughput bound execution
phase. In other words, there are two choices: to scale fre-
quency up or to unfold and turn on one or more cores.
PAMPA opts for unfolding and turning on cores over fre-
quency scaling —if all the turned-on cores are highly-utilized,
applications benefit more from unfolding an extra core than
from scaling frequency up. If all the cores are already un-
folded and turned-on, PAMPA increases frequency instead.

If after the unfolding decision, the just enabled cores re-
main empty or low utilized, the application was not through-
put bound but single-thread performance bound. In other
words, scenario A becomes scenario B (where some, but not
all, the cores are highly utilized) and PAMPA will actuate
accordingly in its next iteration.

6.2 Scenario B
The middle part of the flowchart presented in Figure 6

evaluates if some, but not all, the turned-on cores are highly
utilized. In this case, PAMPA assumes that the application
is traversing a single-thread-performance bound execution
phase and decides to increase frequency (if frequency is not
already at its maximum value). Otherwise, if the applica-
tion were bound by throughput, we should expect the other
(not fully utilized or empty) cores to become utilized by the
application.

6.3 Scenario C
The bottom part of the flowchart presented in Figure 6

evaluates if all the turned-on cores are either lightly utilized
or empty. In this case, PAMPA assumes that it is safe to
reduce frequency or, if frequency is already at its minimum
value, to fold and power off cores. The consideration of sce-
nario C is one of the pillars of PAMPA’s robustness, be-
cause frequency is reduced and cores are folded only if all
the turned-on cores have low utilization. In other words,
PAMPA prevents frequency reduction and core folding even
if just one physical thread in the processor presents high uti-
lization to avoid severe performance degradation.

After evaluating the three scenarios, PAMPA also folds
and turns off empty cores. This action is complementary
and independent from the treatment of scenarios A, B and
C. In PAMPA’s current implementation, all but one empty
cores are turned off. The benefits of keeping one empty core
“alive” are twofold: it helps to absorb temporary utilization
peaks and, more important, it prevents PAMPA from enter-
ing into unstable situations. For example, turning all empty
cores off may convert scenario B into scenario A and, after
that, PAMPA may convert scenario A into scenario B again
by unfolding cores. This ping-pong behavior between two
scenarios is “broken” by keeping one empty core turned on.

6.4 PAMPA Adjustment Parameters
The efficiency of the PAMPA algorithm can be adjusted

based on the following configuration parameters:
Monitoring interval (T ): PAMPA is triggered (and core-
level utilization sensors are read) every T milliseconds.
History length (H): PAMPA considers the last H core-
level utilization samples to represent the utilization of each
core. If H = 1, PAMPA takes just the most recent sample to
represent core-level utilization. If H > 1, the average of the
last H samples is used. The smaller the H value, the faster
PAMPA can make decisions. However, too small history val-
ues can lead to wrong decisions due to lack of information
to characterize the utilization of each core. On the other
hand, large H values can help to smooth application behav-
ior, reducing the risk of wrong decisions due to utilization
outliers.
Enabling threshold (K): even if PAMPA is triggered
every T milliseconds, the algorithm executes only during
stable execution phases. To determine if the current exe-
cution phase is stable, PAMPA computes the average and
standard deviation of the last H core-level utilization sam-
ples: core i utilavg and core i utilstdev, respectively. If
core i utilstdev ≤ K×core i utilavg for each core i, PAMPA
assumes that the application is traversing a stable compu-
tation phase and, therefore, it is safe to make decisions. It
prevents PAMPA from making decisions during phase tran-
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Parameter Value Range Explored

T 1000ms
Smaller values are not explored
due to infrastructure limitations
to collect power readings at finer

granularities.
H 3 1, 2, 3, 4, 5
K 0.2 0.0, 0.1, 0.2, 0.4, 0.6, 0.8

low util 0.70 0.70, 0.72, 0.74, 0.76, 0.78, 0.80
high util 0.80 0.80, 0.82, 0.84, 0.86, 0.88, 0.90
empty 0.10 0.10

Table 1: PAMPA configuration parameters and ranges ex-
plored. “Value” column shows the ones used in the experi-
ments, which maximize the power-performance efficiency.

sitions, which are wrong in many cases. Too small K values
will keep PAMPA silent most of the time. On the other hand,
too large K values may lead to PAMPA decisions even during
phase changes.
Low utilization threshold (low util): PAMPA considers
that a core is low utilized if its utilization is smaller than this
threshold.
High utilization threshold (high util): PAMPA consid-
ers that a core is highly utilized if its utilization is larger
than this threshold.
Empty core threshold (empty): In addition, PAMPA
considers that a core is “empty” if its utilization is lower
than a fixed threshold, which in the current implementation
is 10%.

We explore all the possible combinations of the adjust-
ment parameters to determine the set which maximizes the
power-performance efficiency (energy per instruction) aver-
aged across all the PARSEC benchmarks, the Lulesh and
CoMD applications and the SPECpower benchmark. Table 1
lists the parameters used for the experiments of Sections 7.1
and 7.2.

7. PAMPA EVALUATION

7.1 SPECpower Benchmark
We execute PAMPA in the context of the SPECpower

benchmark [1], which combines power and performance mea-
surements. A SPECpower run goes through a calibration
phase to determine the maximum sustainable throughput,
and a running phase at different percentages of the calibrated
throughput (or load levels): 100%, 90% ... 10%.

SPECpower consists of independent data warehouses (im-
plemented as Java threads) which receive transaction re-
quests from users. Each warehouse receives transactions gen-
erated based on a probability distribution; therefore, load
levels across warehouses may be different at any given time.
We evaluate PAMPA in a SPECpower configuration with 16
Java Virtual Machines (JVMs), 4-warehouse each, for a total
of 64 warehouses.

For the study presented in this section, we compare the
proposed PAMPA algorithm against four different power man-
agement settings:

• No power management — In this configuration,
we disable both PCPG and DVFS in the POWER7+

system under evaluation. This scenario constitutes the
baseline.

• Only PCPG — Only the core folding and PCPG al-
gorithm is enabled, which dynamically adjust the num-
ber of needed cores based on the processors utilization.
After one or more cores are folded, the Hypervisor is
also notified to power gate the just-folded cores.

• Only DVFS — Only the DVFS algorithm is enabled,
which dynamically adjust the processors frequency, fol-
lowing an approach similar to the core-pool algorithm [29].

• Both PCPG and DVFS enabled — Both algo-
rithms are enabled and can make independent DVFS-
and PCPG-related decisions. We purposely deploy the
algorithms as separate agents in the POWER7+ sys-
tem in order to mimic a decoupled power manage-
ment approach. These are expert-driven algorithms
highly-tuned to improve power-performance efficiency.
Therefore, the PCPG+DVFS decoupled approach con-
stitutes a highly (power-performance) efficient scenario.

It is important to note that we calibrate the different
SPECpower executions to the same maximum sustainable
throughput to make a fair comparison among them.

Figure 7a presents the actual throughput for the different
load levels in terms of SPECpower operations per second
(ssj ops). The throughput attained by the different settings
is similar, with exception of the 100% load level. In this
case, DVFS-Only, PCPG+DVFS and PAMPA slightly im-
prove throughput with respect to the baseline by scaling fre-
quency above its nominal value (Figure 7b).

It is important to note that PAMPA’s main objective is
not (necessarily) to outperform the most aggressive, decou-
pled PCPG+DVFS technique in terms of power-performance
efficiency. PAMPA’s ultimate goal is, instead, to attain simi-
lar efficiency levels as PCPG+DVFS while fixing those cases
where the independent PCPG and DVFS operation leads to
conflicting decisions. Although PCPG+DVFS does not ex-
hibit conflicting decisions for SPECpower, in the next two
sections we show lack of robustness in the PCPG+DVFS
operation for some applications.

7.2 Highly-Parallel Scientific Applications
The previous section evaluates PAMPA for the SPEC-

power benchmark. We show that PAMPA can attain power-
performance efficiency levels similar to the most aggressive,
decoupled PCPG+DVFS algorithm. In this section, we present
the counterpart evaluation for the PARSEC applications.
PARSEC applications are highly-parallel workloads repre-
sentative of next-generation shared-memory programs for
chip-multiprocessors [4]. PARSEC does not officially sup-
port the AIX OS, so only the Blackscholes, Canneal, Flu-
idanimate and Streamcluster applications could be run on
the AIX/POWER7+ system. The PARSEC benchmarks are
multi-threaded applications, in which the number of software
threads is specified at the onset of the execution. In this
work, we execute them with 8, 16, 32 and 64 threads.

Figure 8 presents the total execution time, average sys-
tem power consumption, energy per instruction (EPI), av-
erage processor frequency and average number of turned-on
cores when the PARSEC applications are executed under
the supervision of the evaluated power management settings.
The results corresponding to each application are organized
column-wise. Each chart shows the results for the 8-, 16-,
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(a) SPECpower operations per second (ssj ops)

(b) Processor frequency

(c) Number of turned-on cores

(d) System power consumption

Figure 7: Comparison of four different power management
settings against the PAMPA algorithm. The evaluated set-
tings are: a baseline where no power management is per-
formed (“No PM”), a scenario with just OS-directed PCPG
enabled (“PCPG Only”), a scenario with just processor-
directed DVFS enabled (“DVFS Only”), and a scenario with
both knobs enabled (“PCPG+DVFS”). The figure presents
the SPECpower operations per second (ssj ops), processor
frequency, number of turned-on cores and system power con-
sumption for the SPECpower ssj2008 benchmark. The re-
sults are normalized to the baseline (“No PM”).

32- and 64-thread cases, normalized to the baseline (No-PM).
For Blackscholes and Canneal, all the settings exhibit similar
execution times. However, the ones that operate core folding

and PCPG (PCPG-Only, PCPG+DVFS and PAMPA) man-
age to lower system power consumption significantly with
respect to the baseline. Blackscholes and Canneal are ap-
plications that spend a significant portion of the time with
few executing threads. Core folding (in conjunction with
PCPG) better exploits this behavior. As a result, PCPG-
Only, PCPG+DVFS and PAMPA show better efficiencies
(i.e. lower EPI values) with respect to the baseline. We
observe in Figure 8 that these three settings are capable of
executing Blackscholes and Canneal at nominal frequency or
higher with just five or six cores on average.

For Fluidanimate and Streamcluster, DVFS-Only and
PCPG+DVFS exhibit unacceptable performance degrada-
tions. When they are compared against the baseline, DVFS-
Only increases execution time (on average) 73% for Fluidan-
imate and 26% for Streamcluster, while PCPG+DVFS in-
creases execution time 89% for Fluidanimate and 49% for
Streamcluster. Even though they significantly prune sys-
tem power, the severe performance degradation results in
poor efficiency for Fluidanimate (i.e. EPI values larger
than the baseline). This undesirable behavior is the result
of an unexpected frequency reduction in these cases. We
say unexpected because both Fluidanimate and Streamclus-
ter are applications that run several CPU-intensive threads
most of the time (in contrast to Blackscholes and Can-
neal, which spend a significant portion of the time with few
threads). Therefore, we expect processor frequency to be
kept at its highest possible value. Instead, Figure 8 shows
that DVFS-Only and PCPG+DVFS lower frequency to its
minimum value. This problem is fixed by PAMPA, which
“detects” that these applications are single-thread perfor-
mance bound and keeps frequency at its maximum value.
In other words, Fluidanimate and Streamcluster fall into
the Scenario B (Section 5) which leads PAMPA to increase
frequency to alleviate single-thread performance limitations.
In the Fluidanimate case, PAMPA lowers EPI (on average)
with respect to the most aggressive, decoupled approach
(PCPG+DVFS). In the Streamcluster case, EPI efficiency
is similar between PAMPA and PCPG+DVFS. However, in
all the cases PAMPA achieves such efficiency by avoiding
severe performance degradation.

Blackscholes and Canneal represent applications with op-
portunities for power reduction, particularly because they
spend part of the execution with few running threads. On the
other hand, Fluidanimate and Streamcluster are good exam-
ples of applications with little or no margin for power savings.
Because of that, Fluidanimate and Streamcluster constitute
excellent vehicles to put algorithms to the test. For example,
PCPG+DVFS presents significant system power reductions
for the four applications. However, PCPG+DVFS is “bro-
ken” in terms of performance for Fluidanimate and Stream-
cluster. In these cases, one may consider running the ap-
plications with no power management support to avoid any
performance impact. Indeed, the No-PM setting keeps per-
formance “healthy” at the expense of no power savings. This
is where the potential of our PAMPA algorithm can be better
appreciated. It manages to keep performance at acceptable
levels most of the time, while still providing power benefits
whenever possible (Blackscholes and Canneal cases).

In addition to the PARSEC applications, we also evaluate
the Lulesh and CoMD benchmarks parallelized with Mes-
sage Passing Interface (MPI) support. Lulesh is the Liver-
more Unstructured Lagrange Explicit Shock Hydrodynamics
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Figure 8: Comparison of four different power management settings (“No-PM”, “PCPG Only”, “DVFS Only” and
‘PCPG+DVFS”) against the PAMPA algorithm, for four PARSEC applications executed with 8, 16, 32 and 64 software
threads. The results are normalized to the baseline (“No PM”).

proxy application [20]. CoMD is a reference implementation
of typical classical molecular dynamics algorithms and work-
loads [11].

Figure 9 presents the total execution time, average system
power consumption, energy per instruction (EPI), average
processor frequency and average number of turned-on cores
when Lulesh and CoMD are executed under the supervision
of the evaluated power management settings. The results
are normalized to the baseline (No-PM). We evaluate Lulesh
with 1, 8, 27 and 64 MPI processes2 and CoMD with 1, 4,
8 and 16 MPI processes. For Lulesh with 8, 27 and 64 pro-
cesses, the DVFS-Only and PCPG+DVFS settings exhibit
performance degradations larger than 50% with respect to
the baseline. This can be explained by observing the fre-
quency, which is reduced to nearly its minimum value by
DVFS-Only and PCPG+DVFS. Even though system power
is significantly lowered due to the frequency reduction, the
execution time increase degrades the EPI, very significantly
in some cases (e.g. PCPG+DVFS consumes 75% more en-

2Lulesh requires a cubic number of MPI processes.

ergy per instruction for the 8-process Lulesh case than the
baseline). In contrast, PAMPA is able to keep frequency at
its maximum value given that Lulesh is also a single-thread
performance bound application which falls into the Scenario
B (Section 5)). At the same time, PAMPA strives to aggres-
sively power gate cores whenever possible (e.g. Lulesh with
one and eight processes) to reduce power consumption.

In the case of CoMD, all the power management settings
exhibit similar performance levels. In particular, DVFS-
Only and PCPG+DVFS do not present the lack of robust-
ness exhibited for the Lulesh application. In terms of effi-
ciency, PAMPA presents EPI values comparable to the most
aggressive, decoupled PCPG+DVFS algorithm. Still PAMPA
is more effective at keeping frequency at its maximum value
which results in a 16% execution time reduction with respect
to PCPG+DVFS for the 8-process CoMD case.

Lulesh and CoMD are two more examples of highly parallel
applications in which PAMPA provides conflict-free robust
operation, while keeping power-performance efficiency levels
comparable to the PCPG+DVFS algorithm.
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Figure 9: Comparison of four different power manage-
ment settings (“No-PM”, “PCPG Only”, “DVFS Only” and
‘PCPG+DVFS”) against the PAMPA algorithm, for the
Lulesh and CoMD applications. The results are normalized
to the baseline (“No PM”).

8. RELATED WORK
The study of the DVFS and PCPG techniques in the con-

text of CMPs has become more popular in the last years as
these “knobs” became available in commercial processors [6,
18, 33]. However, to the best of our knowledge, our work is
the first one evaluating these techniques on a real hardware
testbed in which both DVFS and PCPG are operable. Other
works rely on simulations and/or analytical models to esti-
mate the benefit of power management algorithms that use
one or more control knobs.

Few prior works address the coordination angle of the
power management techniques. Among them, Raghavendra
et al. [28] propose a power management solution for power
management coordination in the context of servers and en-
terprise applications. As in our case, Raghavendra et al.
also identify the lack of power management coordination as
a potentially dangerous problem. Their solution is based on
a nested structure of multiple feedback controllers at vari-
ous levels. Our work is different than Raghavendra et al.’s
because we focus on processor-level (instead of server-level)

power management, PAMPA does not require off-line pre-
processing, and our evaluation is fully executed on a real
system. Devadas et al. [10] tackle the problem of energy man-
agement coordination by presenting an algorithm that, first,
assigns cores to applications statically and, then, manages
run-time power consumption by exploiting core idle states.
Their results are also based on simulations and focus just
on real-time applications. Deng et al. [9] present CoScale, a
method to coordinate CPU and memory subsystem DVFS
under performance constraints. Similar to our work, CoScale
relies on execution profiling of core and memory access per-
formance, by using performance counters.

The Advanced Configuration and Power Interface (ACPI)
constitutes a standard which enables OS-directed configura-
tion, power management, and thermal management of plat-
forms [2, 31]. ACPI provides support of the power manage-
ment activities in a system through a set of states and the
transitions between them. Intel’s Sandy Bridge microarchi-
tecture is an example of a chip which power management
capabilities can be operated through ACPI. In this case, the
OS generates requests —through the available ACPI states—
which are eventually honored by the Package Control Unit
(PCU) embedded in the chip [30]. ACPI represents the
efforts to provide coordination of the power management
activities in a system insofar as the OS has exclusive con-
trol of power management and device configuration. How-
ever, in a virtualized environment where multiple OSs share
hardware resources (e.g. processors), different OS instances
may simultaneously instruct different ACPI state transitions.
In some cases, these transitions may be antagonistic and,
even worse, fool each other. Therefore, it is mandatory to
adopt an extra level or coordination residing as close to the
hardware under management as possible. Therefore, the
PAMPA algorithm —which is envisioned to be deployed clos-
est to the processors— is not a replacement, but a comple-
ment to ACPI. For example, VMware ESX/ESXi is another
product intended for hardware virtualized across different
OSs. VMware ESX/ESXi already provides power manage-
ment capabilities [35] and constitutes the system software
layer where PAMPA should reside.

HP Power Regulator [14] is an OS-independent power man-
agement feature —equivalent to the EnergyScale microcon-
troller described in Section 2— to configure a server to maxi-
mize performance, maximize power savings, or match proces-
sor power consumption dynamically as system load changes.
One mode, called HP Dynamic Power Savings mode, gives
frequency control to the Power Regulator firmware on the
system board. In this mode, the OS may also be making its
own power management decision, decoupled from the Power
Regulator control logic.

Regarding power management techniques, it is worth men-
tioning Ma et al.’s work [24], in which PCPG and DVFS are
studied in the context of CMPs. Authors argue that PCPG
and DVFS have to be actuated in a decoupled way to exploit
the different characteristics of the two techniques. Their so-
lution, known as PGCapping, operates PCPG and DVFS to
meet CMP power constraints as well as to balance the core
lifetimes. Even though we also use PCPG and DVFS in
the context of CMPs, our work is novel due to the follow-
ing reasons. First, we do not focus on power optimization
solely but on exposing and tackling the drawbacks of the de-
coupled PCPG and DVFS operation. And second, once we
understand these problems, we show that PCPG and DVFS
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management has to be done in a coordinated way to im-
prove the synergy of these techniques, which is in opposition
to Ma et al.’s conclusion. In addition, our work is based on a
real PCPG evaluation while Ma et al. make use of emulated
PCPG. Cochran et al. [8] propose to pack software threads
on to a variable number of cores to fit a given power bud-
get in conjunction with DVFS. In our case, we use PCPG
in addition to DVFS, showing an operative way to combine
both. We consider that the use of DVFS alone has a limited
effectiveness due to the power supply voltage (Vdd) becom-
ing more and more close to the threshold voltage (Vth) in
new generation systems. Lee et al. [21] present an analytical
model to study the power and performance implications of
the use of DVFS and PCPG in CMPs. Isci et al. [19] pro-
pose the adoption of a global power manager in the context
of CMPs which senses per-core power and performance in-
formation at run-time. Based on variations in application
behavior, the power manager sets particular per-core power
levels to fit a power budget. Madan et al. [25] present a study
of two basic PCPG heuristics and their potential flaws. The
heuristics are aimed to reduce power consumption of idle
cores. The paper also analyzes possible “holes” (which may
produce negative power savings) and proposes a guard mech-
anism to prevent them. Also related to robustness of power
management in multi-core processors, Bose et al. [5] pro-
vides a broad overview of the potential holes and introduce
the idea of guarded power management.

The use of hardware event counters in the context of multi-
threaded applications is also leveraged in prior studies. Tam
et al. [32] propose a mechanism for thread clustering based
on data sharing patterns. It is implemented at OS kernel
level with information from hardware event counters. Bhat-
tacharjee et al. [3] also propose the use of processor counters
to dynamically predict thread criticality. A critical thread is
the slowest thread in an application, which limits its perfor-
mance. They propose to exploit thread criticality prediction
for load balancing and energy saving purposes.

9. CONCLUSIONS
Dynamic power management capabilities are widely avail-

able as an integral part of today’s processors and systems.
These techniques include (but are not limited to) DVFS, core
folding and PCPG. To make the most use of these power
management knobs, system designers advocate the adoption
of decoupled power management approaches. The goal is to
keep the control algorithms simple and to take advantage of
their different transition time overheads. However, the inde-
pendent operation of the power management knobs can lead
to conflicting decisions of the control algorithms which may
result in worse power-performance efficiency.

In this work, we argue for the coordination of the power
management activities in the system to improve the ro-
bustness of DVFS and PCPG operation. We present a
detailed measurement-based evaluation and comparison of
product-level power management policies available in a mod-
ern multi-core system. We then introduce PAMPA, a Power-
Aware Management of Processor Actuators algorithm, ca-
pable of attaining power-performance efficiency compara-
ble to the most aggressive power management approach,
while achieving conflict-free actuation of the power manage-
ment activities. In contrast to most of the utilization-based
power management algorithms deployed in today’s systems,

PAMPA adopts a novel approach to guide its decisions —
it dynamically “detects” situations in which an application
may be bound by single-thread-performance or throughput
and actuates the power management knobs accordingly. We
evaluate PAMPA on a real AIX/POWER7+ system with
DVFS, core folding and PCPG capabilities. In this sce-
nario, PAMPA exhibits power-performance efficiencies for
the SPECpower, PARSEC, Lulesh and CoMD benchmarks
comparable to the most aggressive power management ap-
proach (“PCPG+DVFS”). At the same time, PAMPA avoids
excessive performance degradation in cases where the inde-
pendent DVFS and PCPG operation results in conflicting
decisions.

Our work shows that the coordinated operation of power
management knobs can benefit the synergy between these
techniques and, at the same time, improve the robustness of
the power management activities in the system.
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