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Abstract

Although cache-coherent shared-memory multiprocessors are
often used to run commercial workloads, little work has been
done to characterize how well these machines support such
workloads. In particular, we do not have much insight into
the demands of commercial workloads on the memory subsys-
tem of these machines. In this paper, we analyze in detail the
memory access patterns of several queries that are represen-
tative of Decision Support System (DSS) databases.

Our analysis shows that the memory use of queries dif-
fers largely depending on how the queries access the database
data, namely via indices or by sequentially scanning the
records. The former queries, which we call Index queries, suf-
fer most of their shared-data misses on indices and on lock-
related metadata structures. The latter queries, which we call
Sequential queries, suffer most of their shared-data misses on
the database records as they are scanned. An analysis of the
data locality in the queries shows that both Index and Sequen-
tial queries exhibit spatial locality and, therefore, can benefit
from relatively long cache lines. Interestingly, shared data is
reused very little inside queries. However, there is data reuse
across Sequential queries. Finally, we show that the perfor-
mance of Sequential queries can be improved moderately with
data prefetching.

1 Introduction

Cache-coherent shared-memory multiprocessors are becoming
a cheap source of easy-to-program computing power. One
promising use of such machines is in commercial workloads,
widely used in applications like large wholesale suppliers or
airline ticket reservation systems. Indeed, recently announced
shared-memory multiprocessors like the Sequent STiNG ma-
chine [5] specifically target the commercial market.

However, while vendors usually present performance results
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for commercial workloads running on these machines, there is
no solid understanding of why the workloads perform the way
they do. In particular, there is very little understanding of the
memory behavior of these workloads. This issue is important
because, in shared-memory multiprocessors, the performance
of an application is often determined by how well it exploits
the memory hierarchy. Furthermore, with the continuous re-
duction in the price of memory, it may soon be feasible for
medium-sized databases to completely reside in memory dur-
ing execution on a shared-memory multiprocessor. Therefore,
how well the memory hierarchy is exploited will directly de-
termine the performance of the workload.

Databases have several characteristics that are likely to af-
fect how they use the memory hierarchy. Specifically, they
have complex locking schemes, directly manage the blocks of
data read into memory from the I/O devices, and use complex
data structures to manage database data efficiently. However,
an analysis of how these characteristics affect memory use is
not trivial. It usually involves monitoring the addresses refer-
enced by the processors as well as other events. Furthermore,
the information extracted from the address traces needs to
be combined with an analysis of the database source code to
determine the operations executed and the data structures
accessed when the address references were issued. While this
is not a problem for scientific workloads like Splash 2 [13],
where the sources are publicly available, it is usually hard
for commercial workloads. Obtaining the source code of a
reasonably-tuned database management system (DBMS) is
difficult because it is usually proprietary.

For these reasons, there is relatively little previous work
in this area. In addition, most of the work has addressed
the performance of these workloads from a high-level point
of view. For example, DeWitt and Gray [3] studied parallel
database systems and indicated that a shared-nothing archi-
tecture seems to be more cost-effective than a shared-memory
architecture. Thakkar and Sweiger [9] looked at the perfor-
mance of On-Line Transaction Processing (OLTP) workloads
running on a Sequent cache-coherent shared-memory multi-
processor and highlighted the importance of process schedul-
ing and the I/O capability of the machine. Maynard et al [6]
contrasted the cache performance of technical and commer-
cial workloads and concluded that the latter is often worse.
Eickemeyer et al [4] showed that a significant performance
improvement can be obtained for OLTP workloads when a
multithreaded processor is used. Finally, other studies that
have involved database workloads include the work by Cve-
tanovic and Bhandarkar [1] on a DEC Alpha AXP system,
Torrellas et al [10] on an SGI multiprocessor, and Rosenblum
et al [7] on a simulated SGI multiprocessor. In general, these
studies agree on the relatively worse memory performance of
commercial workloads. However, they do not give us the in-
sight of what the actual memory access patterns are like.

In this paper, we analyze in detail the memory access pat-



terns of three queries that are representative of Decision Sup-
port Systems (DSS) workloads. DSS databases store large
quatities of data. Queries to these databases are usually read-
only and extract useful information in order to aid decision
making. We use three queries from the standard TPC-D
benchmark [11] and simulate the memory hierarchy of a 4-
processor cache-coherent NUMA running a memory-resident
database. We use a modified version of Postgres95 [8, 14], a
public-domain database from the University of California at

Berkeley.

Our analysis shows that the memory use of queries dif-
fers largely depending on how the queries access the database
data, namely via indices or by sequentially scanning the
records. The former queries, which we call Index queries, suf-
fer most of their shared-data misses on the indices and on
lock-related metadata structures. The latter queries, which
we call Sequential queries, suffer most of their shared-data
misses on the database records as they are scanned. An anal-
ysis of the data locality in the queries shows that both Index
and Sequential queries exhibit spatial locality and, therefore,
can benefit from relatively long cache lines. In addition, we
find that shared data is reused very little inside queries. How-
ever, there is data reuse across Sequential queries. Finally, we
find that the performance of Sequential queries can be im-
proved moderately with data prefetching.

This paper is organized as follows: Section 2 describes some
background material on query processing and the workload
used; Section 3 presents the three queries that we trace; Sec-
tion 4 describes Postgres95 and defines the methodology used
for our analysis; Section 5 performs the analysis of the mem-
ory performance; and Section 6 evaluates the impact of data
prefetching.

2 Query Processing and TPC-D

In this section, we introduce some background material on
query processing and then describe the TPC-D DSS workload
that we use.

2.1 Query Processing

2.1.1 Query Operations

In the relational database model, data is stored in tables,
also called relations. These tables are composed of records
called tuples. Each tuple contains fields called attributes.
A database query is composed of different basic operations.
Typical operations are Select, Join, Sort, Group and Aggre-
gate. Each of these operations consumes the data in one or
two tables of tuples and generates one table of tuples as a
result. Each of these operations can be implemented using
different algorithms.

A select operation takes one table and generates another
one that has all the tuples of the input table that satisfy a
given condition on a tuple attribute or a set of attributes. This
operation can be implemented with two algorithms: Index
Scan select or Sequential Scan select. The first one uses an
index data structure to access only the tuples in the input
table that satisfy the condition. The second one is used when
there is no index structure on the attributes that are checked.
Therefore, all the tuples in the input table have to be visited.

A join operation takes two tables and produces one result
table. A join selects a pair of tuples, one from each table,
that have one or more attributes in common and that satisfy
a given condition. The result table contains the chosen pairs of
tuples without replicating the common attributes. A join can
be implemented using different algorithms. The best known
algorithms are the Nested Loop, Merge, and Hash join. The

nested loop join simply uses a doubly nested loop to try to
match each tuple of one table to all the tuples of the other
table. The merge join orders both input tables and then tries
to match the two ordered streams of tuples. Finally, the hash
join builds a hash table using one of the input tables and then
probes it for each of the tuples of the other input table.

The sort operation orders the tuples of a table based on the
value of one attribute. The group operation generates a table
that has one tuple for each group of tuples in the input table
that have a common value in the grouping attribute. Finally,
the aggregate operation generates a table where one or more
attributes of each tuple in the input table are modified by
an operation. This operation may be an arithmetic opera-
tion. More information on these operations and the relational
database model can be found in [2].

2.1.2 Query Execution

Queries can be written in several database languages. For
example, Figure 1-(a) shows an example of a query written in
SQL that will be analyzed later. A query that is submitted
to a database system undergoes three different steps, namely
parsing, optimization and execution. The parsing step checks
for the correctness of the query syntax and semantics.

The optimization step rewrites the query into a Query
Plan Tree that contains the basic operations described in Sec-
tion 2.1.1 in some order that minimizes the execution time.
An example of such a tree is shown in Figure 1-(b). The
shape of the query plan trees depends on the database sys-
tem that generates them. The database system that we use
in our experiments generates left-deep trees. The tree is built
based on heuristics and cost analysis of different possible im-
plementation alternatives. Usually, the optimization step is
performed at compile time to save time during the execution.
However, some optimizations may be a function of certain pa-
rameters that are only known at runtime. In those cases, the
optimization step is completed at runtime.

Finally, in the execution step, the system performs the
query operations according to the query plan tree. Each node
in the tree corresponds to one of the basic operations described
previously. The leaves of the tree correspond to sequential or
index scans of the tables. FEach child of a node represents
the flow of a stream of data to the node. The execution of
a left-deep tree is a depth-first recursive descend of the tree
that scans the different tables, transfers the data to the top-
most node of the tree and, in the process, performs the basic
operations required by the query. To avoid the use of very
large temporary tables, the results are passed tuple-by-tuple
between the nodes in a pipelined manner. This approach is
possible for any node that does not require the whole input
data before it can perform its operation. However, in the sort
nodes, we need temporary tables to store the whole input
data. Example executions of query plan trees are discussed in
detail in Section 3.

2.2 DSS Workloads and TPC-D

One of the most important classes of commercial workloads is
DSS databases. These databases often store large quantities
of information that is queried to make a decision. Typically,
DSS queries are complex and access the data in a read-mostly
manner. A well-known benchmark that simulates a DSS sys-
tem is TPC-D [11]. In this section, we first describe TPC-D

briefly and then examine its queries in detail.

2.2.1 TPC-D

TPC-D simulates an application for a wholesale supplier that
manages, sells and distributes a product worldwide. The data



in TPC-D is organized in several tables. The most important
of the TPC-D relations are lineitem, order, part, customer,
and supplier. The simulated company buys parts (stored in
table part) from suppliers (stored in table supplier) and sells
them to customers (stored in table customer). Each time an
order is placed by a customer, it is added to the order table
and the ordered parts are added to a list of ordered items
(table lineitem). Any attribute of the tuples in these tables
can potentially be accessed via indices.

2.2.2 TPC-D Queries

TPC-D has 17 read-only queries (Q1 to Q17) and 2 update
queries (UF1 and UF2). Most of the queries are large and
complex, and perform different operations on the database
tables. Table 1 lists the operations performed by the read-
only TPC-D queries when the query plan trees are generated
by the database system used in this paper. The database
system is Postgres95 and is described in Section 4.1. The
select operations can be implemented by the sequential scan
(SS) or the index scan (IS) algorithms. The join operations
can be implemented by the nested loop (NL), merge (M), or
hash (H) join algorithms. In the table, we have grouped the
queries based on how the select operation i1s implemented.
Such implementation, of course, is a function of the set of
indices that we added. From the table, we see that some
queries implement sequential scan selects only, while others
implement index scan selects only, and others implement both.

Table 1: Operations in the read-only TPC-D queries.

Query Select Join Sort Group Aggr.

SS | Is | NL | M | H

Q1, Q4 v v v

Qs V/ /

Qb / VA

Q16 v VA VA AR Y,

Q2 VAR ¥

Q3, Q5,

Q10, Q11 vV v v |

Qs YA

I A RVARY 7

Q12 VAR 7 VA Y

Q13 VA VAR VA VAR

Q4 Q7 | Vv |V | vV v

From the queries in the table, we chose three representative
ones that we will examine in detail in the rest of the paper.
Our choice is based on the fact that, as we will see, the type
of select algorithm used in the query largely determines the
memory access patterns of the query. For this reason, we
chose one query from each of the three groups in the table:
Q3, Q6 and Q12. We do not examine any of the two queries
that write data. This is because the locking support in the
Postgres95 database i1s not as fine-grained as in some of the
tuned commercial databases (Section 4.1.1). Update queries
are much more demanding on the locking algorithm. In addi-
tion, the update queries are not as complex as the read-only
ones.

3 Memory Access Patterns of
TPC-D Queries

To understand the performance of the memory hierarchy un-
der TPC-D Queries Q3, Q6 and Q12, we devote this section
to an analysis of the memory access patterns of these queries.
This analysis will be used to explain the simulation results
in Section 5. The database data is stored in shared-memory

buffers as will be described in Section 4.1.1. The queries are
coded in the limited form of SQL supported by the database
system that we use. In all cases, we coded the queries so that
they have the same memory access patterns as if the queries
were coded in a system that supported a full SQL implemen-
tation. Sometimes, this forced us to make small changes to
the code. Consequently, the SQL programs that we use to
code the queries do not compute exactly what the Transac-
tion Processing Performance Council proposes. Their memory
access patterns, however, are those of a system with full SQL
implementation. In the following, we consider each query in
turn.

3.1 TPC-D Query Q3

Q3 retrieves the unshipped orders of customers within a spe-
cific market segment and dates. For example, a possible query
could retrieve all the orders from market segment “automo-
bile” that have an order date prior to “February 3, 1995” and
by date “March 19, 1995” had not yet been shipped. The
SQL code that we use for query Q3 and the query plan tree
generated by Postgres95 are shown in Figure 1.

SELECT
lineitem.orderkey,

SUM(lineitem.extendedprice) AS revenuel, :l Aggregate
SUM(lineitem.discount) AS revenue2,
order.orderdate,
order.shippriority
FROM
customer, order, lineitem
WHERE
customer.custkey = order.custkey AND 1) :l Join
lineitem.orderkey = order.orderkey AND 2

customer.mktsegment = "segment" AND
order.orderdate < "datel" AND
lineitem.shipdate > "date2"

(3 Select
(4)
®)
GROUP BY
lineitem.orderkey, (6) Sort and Group
order.orderdate,
order.shippriority
ORDER BY
revenuel USING >, :I (7) Sort

order.orderdate;

(a)

Aggregate

Nested Loop
Join

)
Index Scan
Select (5)
Index Scan
Seect (1)

rder
(b)

Nested Loop
Join (1)

Index Scan
Select (3)

Figure 1: Query Q3. Chart (a) shows the SQL code,
while Chart (b) shows the query plan tree. The num-
bers inside the nodes of the tree correspond to state-
ment numbers in the SQL code.

The execution proceeds as follows. First, Q3 traverses table
customer to select those customers that belong to market seg-
ment “segment”. This is shown in clause (3) of Figure 1-(a)
and is represented by the leftmost leaf of the tree in Figure 1-
(b). Note that the table is accessed via indices and, therefore,
only the tuples that match are ever accessed. Each time that
a matching tuple is found, it is sent to the Nested Loop Join
(1) node of the tree. This node passes the customer.custkey



attribute of the tuple to the Index Scan Select (4) node of the
tree. At this point, the Index Scan Select (4) node searches
the order table to find orders that belong to the same cus-
tomer (clause (1) in Figure 1-(a)) and were placed previous
to a certain date “datel” (clause (4) in Figure 1-(a)). Again,
table order is accessed via indices. Every time one of these
tuples is found, it is passed to the Nested Loop Join (1) node
where it is joined with the customer tuple.

The resulting tuple is passed to the Nested Loop Join (2)
node. The order.orderkey attribute of the tuple is passed to
the Index Scan Select (5) node. There, the lineitem table is
accessed via indices to find all the lineitems with the same or-
derkey (clause (2) in Figure 1-(a)) that have not been shipped
by date “date2” (clause (5) in Figure 1-(a)). For each tuple
that matches, the Nested Loop Join (2) node performs the
join.

When the three tables have been completely searched
and all the necessary joins have been performed, the se-
lected tuples are sorted in the Sort (6) node.  Then,
in the Group (6) node, the selected tuples are grouped
by attributes lineitem.orderkey, order.orderdate, and or-
der.shippriority (clause (6) in Figure 1-(a)). Finally, the Ag-
gregate and Sort (7) nodes perform the aggregate and remain-
ing sort operations specified in the query.

Most of the memory accesses to shared data in this query
are issued by the index scan operations. These operations
access two major shared data structures, namely the data
tables and the indices. If we focus first on the data tables,
we see that there is practically no temporal or spatial locality
at the tuple level. Indeed, a given tuple is not accessed more
than once in the same query. Furthermore, two consecutive
tuples are not necessarily related in anything and, therefore,
are not necessarily accessed at similar times. All this is clear if
we consider the tuples accessed in the query. The Index Scan
Select (3) node reads the customer tuples whose mktsegment
attribute is “segment”. The Index Scan Select (4) node in turn
reads the order tuples whose custkeyis equal to the custkey of
one of the selected customer tuples. Finally, the Index Scan
Select (5) node reads the lineitem tuples whose orderkey is
equal to the orderkey of one of the selected customer-order
tuple pairs.

Accesses within a tuple, however, have spatial locality. This
is because, for a given tuple, several attributes are read. For
example, both the mktsegment and custkey attributes of a
given customer tuple are read. However, no significant tem-
poral locality is present within a tuple. This is because the
database 1s optimized so that the same attribute does not have
to be read twice in this query.

Accesses to the index data structures have both temporal
and spatial locality. For example, consider the index tree for
the custkey attribute of the order table. There is temporal
locality because the top levels of the index tree are re-read
every time a new customer is considered. There is spatial
locality because consecutive locations of the index b-tree are
read when the query searches for the orders of a given cus-
tomer.

Finally, we consider data reuse across queries. The index
data structures are clearly reused across queries. However, the
data tables are not likely to be reused. This is because each
query accesses its own set of tuples. Tuple reuse is only pos-
sible if the two queries have clauses with the same or similar
attributes, which force them to access some common tuples.

The select nodes in Figure 1 read shared data and make
copies of the selected tuples into private data. The rest of the
nodes work on this private data. Private data accesses have
some spatial locality because, sometimes, several attributes of
the same tuple are read close in time. They also have some
temporal locality because the same private storage is reused
for all the selected tuples.

3.2 TPC-D Query Q6

Q6 quantifies the revenue increase that would have resulted
from eliminating discounts in a given percentage range during
a given year. For example, a possible query could be to com-
pute the difference in revenue between “February 3, 1994” and
“February 3, 1995” for the range of products discounted by
15%. The SQL code that we use for query Q6 and the query
plan tree generated by Postgres95 are shown in Figure 2.

SELECT

SUM(lineitem.extendedprice) AS revenuel, :I Aggregate
SUM(lineitem.discount) AS revenue2
FROM
lineitem
WHERE
lineitem.shipdate >= "date" AND Select

lineitem.shipdate < "date" + "1 year" AND
lineitem.discount > "discount” - 0.01 AND
lineitem.discount < "discount" + 0.01 AND
lineitem.quantity < "quantity";

(a)
(k)

Figure 2: Query Q6. Chart (a) shows the SQL code,
while Chart (b) shows the query plan tree.

This query is very simple. The query traverses the lineitem
table sequentially, visiting all the tuples. The tuples that sat-
isfy the select clauses shown in Figure 2-(a) are passed up to
the Aggregate node. In the Aggregate node, two arithmetic
operations are performed. Clearly, nearly all of the shared
memory accesses in the query are issued by the sequential scan
operation. They are directed to the lineitem table. For each
tuple, the query reads the attributes to be checked in the select
conditions, namely lineitem.shipdate, lineitem.discount, and
lineitem.quantity. If the clauses are satisfied, the query also
reads the attributes needed in the Aggregate node, namely
lineitem.extendedprice and lineitem.discount. There is no ac-
cess to indices.

There 1s abundant spatial locality in these accesses. Indeed,
the query reads several attributes of the same tuple and, in
addition, it reads consecutive tuples. There is, however, no
reuse of a tuple within a query and, therefore, there is no
temporal locality.

There is reuse and, therefore, temporal locality, across
queries. This is because every time that Q6 is executed, it
reads the whole lineitem table. Unfortunately, lineitem is
large (approximately 70% of the total database data). In our
experiments, it takes about 12 Mbytes.

For this query, the locality and reuse of private data is the
same as in Q3. There is no additional spatial locality across
tuples because all the selected tuples reuse the same storage.

3.3 TPC-D Query Q12

Q12 determines whether selecting less expensive modes of
shipping is negatively affecting critical-priority orders by de-
livering orders after the committed date. For example, a pos-
sible query would be to retrieve the orders that have been de-
livered after the committed date for a one year interval start-
ing on “February 3, 1994” using the “regular air” and “air”
shipping modes. The SQL code that we use for query Q12
and the query plan tree generated by Postgres95 are shown in
Figure 3.



SELECT
lineitem.shipmode,
order.orderpriority

FROM
order, lineitem

WHERE
order.orderkey = lineitem.orderkey AND
(lineitem.shipmode = "shipmodel” OR
lineitem.shipmode = "shipmode2") AND
lineitem.commitdate < lineitem.receiptdate AND
lineitem.shipdate > lineitem.commitdate AND
(lineitem.receiptdate >= "date" AND
lineitem.receiptdate < "date" + "1 year")

] (1) Selectand Join
(2) Select

GROUP BY
lineitem.shipmode | (3) Group and Sort
ORDER BY
lineitem.shipmode | (4) Sort
(a)

Seq Scan
Select (1)

Index Scan
Select (1

Seq Scan
Select (2)

(b)

Figure 3: Query Q12. Chart (a) shows the SQL code,
while Chart (b) shows the query plan tree.

The execution proceeds as follows. Table lineitem is tra-
versed sequentially by the Sequential Scan Select (2) node.
Each tuple is selected with clauses (2) in Figure 3-(a). Each
tuple that satisfies these clauses is passed to node Sort (1).
There, a temporary table is formed and its tuples are sorted
on attribute lineitem.orderkey. The sorting is necessary be-
cause the Merge Join (1) node requires the input tables to be
sorted. Next, the Sequential Scan Select (1) node reads the
sorted tuples one by one and passes them to the Merge Join
(1) node. The latter node passes attribute lineitem.orderkey
to the Index Scan Select (1) node, which selects the tuples
in the order table that have the same orderkey. The selected
tuples are joined one by one in the Merge Join (1) node and
then sorted and grouped in the next few nodes.

The memory access patterns in this query are a combina-
tion of those in queries Q3 and Q6. Indeed, the locality and
reuse patterns of the accesses to the lineitem table are similar
to those of the accesses in Q6. In addition, the locality and
reuse patterns of the accesses to the order table are similar to
those of the accesses in Q3. Likewise, the locality and reuse
of private data is the same as in Q3 and Q6.

3.4 Summary

The analysis in this section suggests that there are two clear
types of access patterns. They result from the way database
tables are accessed, namely sequentially or via indices. If the
majority of the accesses in a query are sequential, we call the
query Sequential query, while if the majority of the accesses
are via indices, we call the query Index query.

In both types of queries, data accesses within a tuple are
likely to have spatial locality. However, in Sequential queries,
there is the additional effect of spatial locality across tuples
and, if the cache space in the node is large enough, data reuse
across queries. In Index queries, index structures have tem-
poral and spatial locality within a query and, in addition, are

reused across queries.

4 Experimental Setup

To validate our analysis and get a deeper insight into how
databases exercise memory hierarchies, we run Q3, Q6, and
Q12 on a real database and simulate the resulting memory
accesses. In this section, we describe the experimental setup
and in the next one, we discuss the results obtained. Our
experimental setup is based on the Postgres95 database in-
terfaced to an execution-driven simulator of a multiprocessor
memory system. In this section, we examine Postgres95, the
issues involved in scaling down the system, and finally the
simulation system.

4.1 Postgres95

Postgres95 is a public-domain, client-server share-everything
database developed at the University of California-
Berkeley [8, 14]. It is a reduced and revised version of the
Postgres database [8]. Postgres has led to commercial prod-
ucts, now being commercialized by Informix. Postgres95 runs
on numerous platforms, is fairly popular, and is considerably
well-tuned for a system developed in academia.

We chose Postgres95 for at least two practical reasons. First
of all, we have its source code. This capability, not easily
attainable for commercial databases like Oracle or Informix,
is practically a requirement for a study of this type. Sec-
ondly, although Postgres95 was developed to run on a unipro-
cessor machine, it supports multiple concurrent transactions
where processes communicate via shared memory. This, as we
will see below, makes it possible to emulate a multiprocessor
database system fairly well. To understand the behavior of
Postgres95 better, we now examine its main data structures
and then discuss how we emulate a multiprocessor.

4.1.1 Postgres95 Data Structures

The major parts of Postgres95 are shown in Figure 4. All
the boxes shown represent software data structures. At the
top of the figure, we show 4 processes with their own private
software caches. These caches store data that is rarely mod-
ified, for example the system catalog. The Shared Memory
Module is shown in the lower portion of the figure. In this
space, we have the Invalidation Cache, which interacts with
the private caches to maintain their contents consistent. We
also have the Lock Management Module with its two hash
tables (Lock Hash and Xid Hash), which determine if a lock
can be acquired or not. The access to these data structures
is protected by a lock called LockMgrLock. Finally, we have
the Buffer Cache Module. This module contains the actual
application data processed by the database. It also contains
the indices. This module manages the pages of application
data and indices similarly to how the operating system man-
ages the pages of other applications. This module has three
components. The Buffer Blocks are 8-Kbyte pages of memory
that hold application data or indices. The Buffer Descriptors
are control structures for the buffer blocks. Finally, the Buffer
Lookup Hash is a hash table that is used to find buffer de-
scriptors. The access to the Buffer Blocks is protected by a
lock called BufMgrLock.

Postgres95 supports two types of locks, namely those that
protect database data and those that protect the data struc-
tures of Postgres95. We call them Datalocks and Metalocks
respectively. While metalocks are simple spinlocks, datalocks
are more complex, since they are multi-type and multi-level.
For example, they can be of type read or write and of level
relation, page or tuple. The purpose of having all these types
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Figure 4: Block diagram of the major parts of Post-
gres95.

and levels i1s to offer higher concurrency: lock types allow
multiple locking of the same data item as long as there are
no conflicts, while lock levels provide different locking granu-
larities. Currently, of all the levels, only the relation level is
fully implemented in Postgres95. This fact clearly limits the
level of concurrency in write-intensive queries. Fortunately,
the queries that we examine are unaffected by this limitation
because they are read-only.

4.1.2 Multiprocessor Emulation of Postgres95

Although Postgres95 was developed to run on a uniprocessor
machine, it is relatively easy to make it run on a simulated
multiprocessor. This is because Postgres95 supports the con-
current execution of transactions issued by different processes.
In the case of a uniprocessor, these processes can interleave
their use of the CPU. Clearly, this can be extended to a sim-
ulated multiprocessor system by having each process run on
a different simulated processor. The parallel programming
model for query execution is inter-query parallelism. This
means that each simulated processor runs a different query or
stream of queries.

Postgres95 was developed to use the client-server model.
Therefore, its front-end communicates via sockets to the back-
end. To make the system more efficient, we modified Post-
gres95 into a single executable that contains both the front-

end and the back-end.

4.2 Scaling Down the System

To evaluate a complex system like a complete Postgres95
database running the standard TPC-D data set requires sub-
stantial simulation time. To keep the cost of our simulations
affordable, we scale down the database. Specifically, we use
the database population generator program distributed with
the TPC-D code to populate the database. Then, we scale
down the data set size 100 times. The result is a database
of about 20 Mbytes of data that our simulations can man-
age. This change, however, prompts us to make two more
corrections.

Since the database is small, the first correction is to reduce
the size of the memory hierarchy of the machine simulated.
We model a machine with slightly over 20 Mbytes of main
memory, 128-Kbyte secondary caches, and 4-Kbyte primary
caches. All these small caches overflow, as the full-sized ones
would in a real system. The memory, however, is large enough
to keep the whole database. This is because we want to study
a memory-resident database.

The second correction has to do with misses on private
data. As we described in Section 3, the tuples processed by
Postgres95 may be copied from the shared address space to the
private one. Large chunks of private heap space are sometimes
allocated for tables of tuples after the join operations. Post-
gres95 operates on these tables as it performs sort or group
operations. Consequently, private references to the heap are
an integral part of Postgres95. Furthermore, it can be argued
that the misses on private heap data structures should some-
how scale up and down with the size of the database. How-
ever, the misses on the other private data, namely stack and
static variables, should not scale with the size of the database.
If we simply reduce the cache sizes, misses on private stack
and static variables will swell disproportionally to their true
weight. Consequently, the second correction that we do is to
assume the all accesses to private stack and static variables
hit in the cache.

Finally, it could be argued that misses on shared Postgres95
metadata also need a similar correction. Such metadata in-
cludes locks, hash tables, or buffer headers. Experimental
data, however, shows that this is not the case. These data
structures have a tiny footprint and, as we will see, most their
misses are caused by coherence activity. Smaller caches do not
change these misses.

4.3 Workloads and Architecture

In our experiments, we run one query of the same type on
each node. Although the queries are of the same type, each
of them has different parameters, chosen according to the
TPC-D specifications. We record statistics for the complete
execution stage of the queries, from start to finish. We do
not run any warm-up query before collecting the statistics
because, depending on the type of query, there could be data
reuse. Without any instrumentation, the queries that we ex-
amine take 6-10 seconds to run on a 150 MHz workstation.
With the tracing and simulation code enabled, the queries are
slowed down by a factor of 1500. Since queries do not have
intra-query data reuse, the traces do not have any transient
period that we might want to discard.

The simulation setup is as follows. The object codes of
the query and Postgres95 are linked together to produce an
executable. Then, the executable is fed to Mint [12], an
execution-driven multiprocessor simulation package. Mint
performs an interleaved execution of all processes, correctly
modeling all the aspects of the shared-memory and synchro-
nization activity. In addition, Mint generates events on-the-
fly to a back-end architecture simulator. The setup of the

experiments is outlined in Figure 5.
]
Query Q3, Q6, Q12
’ Mint ’ Simulator ‘

Results

Figure 5: Experimental setup.

The simulated architecture is a 4-processor directory-based
cache-coherent NUMA shared-memory multiprocessor. Each
node of the architecture includes a simulated off-the-shelf 500
MHz processor with a 16-entry write buffer, a 4-Kbyte on-
chip primary cache with 32-byte lines, and a 128-Kbyte off-
chip secondary cache with 64-byte lines. The primary cache
is direct-mapped, while the secondary cache is 2-way set-
associative. Processors stall on read misses and on write buffer
overflow. For simplicity, we model an interconnection network
where a message traveling from one node to another takes a
fixed 100 cycles. All contention in the system is modeled,
except in the network, where the simulator assumes a con-



stant delay. Overall, on a primary cache miss, the round-trip
latency time for a request satisfied by the secondary cache,
local memory, and remote node in a 2-hop or 3-hop transac-
tion is 16, 80, 249, and 351 cycles respectively. Consequently,
a 2-hop remote transaction takes under 500 ns. This archi-
tecture, which we call baseline, is modified in the course of
our experiments. We change the sizes of the caches and cache
lines. In all cases, however, the size of the line in the primary
cache is half the size of the line in the secondary cache. When
we mention only one line size we refer to the line size of the
secondary cache.

5 Evaluation

We now present the results of the simulations. We start by
studying the overall memory behavior of the queries in Sec-
tion 5.1. Then, in Section 5.2, we examine the locality of the
memory accesses in detail.

5.1 Overall Memory Behavior

A breakdown of the execution time of the queries for the base-
line architecture is shown in Figure 6-(a). The bars are nor-
malized and then broken down into three categories, namely
Mem, MSync, and Busy. Mem is the processor stall time due
to memory accesses not satisfied by the primary cache. It
includes the effect of read misses and write buffer overflow.
MSync is the time spent synchronizing in metalocks. The
time spent synchronizing in datalocks is negligible. This is
because the queries are read-only and, therefore, there is no
contention for locks that protect application data. Finally,
Busy includes the rest of the processor cycles.
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Figure 6: Execution time (Chart (a)) and stall time
due to memory accesses (Chart (b)) for Q3, Q6 and

Q12.

Figure 6-(a) shows that Busy accounts for 50-70% of the
execution time, while Mem accounts for 30-35%. Since this
paper focuses on the impact of memory accesses, we concen-
trate on the Mem time. Figure 6-(b) normalizes the Mem
time and then decomposes it based on the data structures
that cause the memory stall. There are four main types of
data structures, namely database data (Data), database in-
dices (Indez), database control variables (Metadata), and pri-
vate data structures (Priv). From the figure we can observe
that, while the portion due to private data does not change
much across queries, the contribution of the rest of the data
structures shows two different behaviors. First, in Q3, nearly
all of it is due to metadata and indices. This is because Q3
accesses all the data via indices. It makes use of the control
structures and indices to read only the necessary database tu-
ples. This is the typical behavior of what we have called Index
queries in Section 3.4. The second behavior is exhibited by
both Q6 and Q12. In these two queries, the contribution of

the shared data structures is dominated by the accesses to
the database data. This pattern is typical of queries that
read large tables sequentially, without using indices. We have
called these queries Sequential queries in Section 3.4. Note
that while Q12 has both a sequential and an index scan se-
lect, the former dominates.

To gain further insight into the stall time due to mem-
ory accesses, we classify the read misses in the primary and
secondary caches according to the data structures that cause
them. The classification is shown in Figure 7. The data struc-
tures that suffer a significant number of misses are: private
data (Priv), database data (Data), database indices (Index),
and several metadata structures, including buffer descriptors
(BufDesc), the buffer lookup hash table (BufLook), the Lock
and Xid hash tables (LockHash and XidHash respectively),
and the LockMgrLock spinlock (LockSLock). In the figure,
each bar is divided into three different types of misses, namely
cold (Cold), conflict (Conf), and coherence (Cohe). In each
chart, the sum of all the bars is 100.
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Figure 7: Normalized number of misses in the primary
and secondary caches classified according to the data
structures missed on.

The leftmost charts of Figure 7 show that most of the misses
in the primary cache are due to accesses to private data. Most
of these misses are of the conflict type. The reason is that
there are about 5 times more accesses to private data than
to shared data. While the size of private data is relatively
small, 1t is large enough to overflow the primary caches. The
rightmost charts of Figure 7 show that the misses in the sec-
ondary cache are a function of the type of query. While Q3
has a mix of misses from metadata, indices, database data
and private data, most of the misses in Q6 and Q12 occur on
database data. In Q3, many of the metadata misses occur on
LockSLock. As explained in Section 4.1.1, this data structure



is the lock that controls the access to the Lock Management
Module, which manages the multi-level multi-type data lock-
ing. This lock is necessary to fully support concurrency of
data accesses in Postgres95 and is continuously accessed by
all processors. The figure also shows that metadata misses
are usually due to coherence activity and, to a lesser extent,
cache conflicts. Data misses, on the other hand, are largely
due to startup effects. This is due to the large amount of
database data that is accessed and the little reuse present.
Index misses, on the other hand, are present only in the Index
query Q3. Indices are large, read-mostly data structures. As
a result, index misses are due to start-up effects and cache
conflicts. Overall, therefore, for the secondary cache, we see
that Sequential queries suffer mostly cold misses, while Index
queries suffer a combination of coherence, conflict, and cold
misses.

The absolute data miss rate of the caches is as follows. In
the primary cache, the miss rates are 5.5%, 3.4%, and 4.8%
for Q3, Q6, and Q12 respectively. In the secondary cache, the
global miss rates are 0.8%, 0.6%, and 0.5% for Q3, Q6, and
Q12 respectively.

5.2 Locality of Accesses

The number of misses on the different data structures directly
depends on the locality of the memory access patterns. In
this section we analyze the spatial and temporal locality of
the data accessed in the queries.

5.2.1 Spatial Locality

In Section 3 we indicated that accesses to database data tend
to have good spatial locality. When a tuple is accessed, it is
likely that several of its attributes will be referenced. Fur-
thermore, in Sequential queries, there is also very good spa-
tial locality across tuples. Accesses to index structures also
tend to have good spatial locality because parts of the index
data structure are traversed sequentially. Finally, metadata is
unlikely to have spatial locality because of the diversity and
small size of its data structures.

To validate these hypotheses, we measure the variation of
the number of misses with the line size of the caches. Fig-
ure 8 shows, for each query, the number of misses in the pri-
mary cache (leftmost charts) and secondary cache (rightmost
charts) for different cache line sizes. All the other parame-
ters correspond to the baseline architecture. The charts are
normalized to 100 for the baseline configuration, which has 32-
byte primary cache lines and 64-byte secondary cache lines.
In each chart, the misses are decomposed into those suffered
on Priv, Data, Index, and Metadata data structures.

From the leftmost charts we see that the number of misses
on private data in the primary cache increases with the line
size. The reason i1s the poor locality of the accesses to heap
data. By increasing the line size while maintaining the cache
size, we are reducing the number of lines in the cache and,
therefore, inducing more conflict misses. The database data,
however, benefits from longer lines because it has good spatial
locality. This is true in the primary caches and, especially, in
the secondary caches (rightmost charts). In the two Sequential
queries (Q6 and Q12), the misses on database data decrease
spectacularly as the line size increases. For Q3, the misses
on both database data and indices also decrease with the line
size. This shows that indices have good spatial locality too.
The behavior of the metadata, however, is irregular. In all
queries, its misses decrease until 64 bytes and then increase.
This indicates that the spatial locality of metadata is lower
than the other data structures. Finally, the misses on private
data decrease with the line size. Private accesses, therefore,
also have some spatial locality. However, their locality cannot
be captured by the small primary cache.

The impact of changing the line size on the execution time
of the queries is shown in Figure 9. For each query, the bars
in the figure are normalized to the bars for the baseline config-
uration. Each bar is divided like in Figure 6-(a) except that
we split the Mem time into the contribution of the accesses
to shared data structures (SMem) and the accesses to private
data structures (PMem). The figure shows that, irrespective
of the query, two trends occur as we increase the size of the
cache line. On the one hand, PMem tends to increase after
16-byte secondary cache lines. This is because private data
has poor primary cache performance. Longer lines cause more
misses. On the other hand, SMem decreases as we increase the
cache line. This is due to the good spatial locality of database
data and indices. With longer lines, each miss takes longer
to satisfy, but there are many fewer misses. When the two
trends are combined, we see that the minimum for the total
execution time is obtained for 64-byte secondary cache lines.
Overall, therefore, we conclude that relatively long cache lines
like those with 64 bytes perform well for these DSS queries.
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5.2.2 Temporal Locality

Temporal locality can be exploited within a query or across
queries. In this section, we consider each case in turn. For
this part of the study, we use a fixed line size of 64 bytes for
secondary caches.

Intra-Query Temporal Locality

In Section 3 we indicated that database data is not reused
within a query. Consequently, there is no temporal locality
and, as a result, large caches should not make a difference in
the miss rate of the database data. In reality, a close look at
the traces reveals that attributes are often accessed a second
time immediately after they are first accessed. The reason is
that a given attribute is first read in a scan select to see if it
satisfies a certain condition. If the tuple it belongs to satis-
fies all the conditions, then the attribute is then read again
and copied to private storage. This reuse, however, occurs
immediately and, whether or not it causes a miss cannot be
affected by the cache size. Therefore, we do not consider it.
The index data structure, instead, is often reused within a
query for Index queries. Specifically, the top level nodes of
its b-tree are traversed very frequently. Finally, it is hard to
determine the reuse of metadata given its complex structure.

To validate our observations, we measure the variation of
the number of misses with the cache size. Figure 10 shows, for
each query, the number of misses in the primary cache (left-
most charts) and secondary cache (rightmost charts) as the
cache sizes change from 4-Kbyte primary and 128-Kbyte sec-
ondary caches to 256-Kbyte primary and 8-Mbyte secondary
caches. The charts are normalized to 100 for the baseline con-
figuration, which has 4-Kbyte primary caches and 128-Kbyte
secondary caches. In each chart, the misses are decomposed
into those suffered on Priv, Data, Index, and Metadata data
structures.

The most obvious trend in the primary cache charts is that
misses on private data decrease significantly. This is consis-
tent with the data in Section 5.2.1, which showed that private
data suffers many misses in the primary cache and few in the
secondary one. Consequently, private data is reused. The Q3
chart also shows that metadata and, as expected, indices have
some temporal locality for Index queries. Focusing now on the
secondary cache charts, it is clear that database data has no
temporal locality. In all three queries, the curve for database
data is flat. The Q3 chart shows that, again, metadata and
indices have temporal locality for Index queries. These results
are consistent with the discussion of Section 3.4.

The impact of changing the cache size on the execution
time of the queries is shown in Figure 11. For each query,
the bars in the figure are normalized to the bars for the base-
line configuration. Each bar is divided like in Figure 9. The

figure shows that, as the caches increase in size, the queries
run faster. Most of the speedup, however, comes from the
reduction of misses on private data (PMem category). In the
Q3 Index query, the temporal locality of indices and metadata
also helps reduce the execution time (SMem category). For
the other queries, however, the speedups are small because
database data has no temporal locality within queries.
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Figure 10: Number of misses on the different data
structures for several cache sizes. In each chart, the
number of misses is normalized to the baseline config-
uration (4-Kbyte primary caches and 128-Kbyte sec-
ondary caches).

Inter-Query Temporal Locality

Finally, we evaluate data reuse across queries. In our experi-
ments, we focus only on queries Q3 and Q12. This is because
Q6 behaves like Q12. We measure and compare the number
of misses in Q3 when the query runs with cold-started caches,
when it runs right after another Q3 query, and when it runs
right after a Q12 query. We do the same thing for Q12. In
our simulations, we use a 1-Mbyte primary cache and a 32-
Mbyte secondary cache. We use these very large caches to
identify the upper bound on the data reuse. In a real system,
of course, the data reuse when two queries are run in sequence
will be smaller.

Figure 12-(a) shows the number of misses in the secondary
cache for an execution of Q3. We show data for our three
setups, namely one where the caches are not warmed up (left-
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Figure 11: Execution time for different cache sizes.

most 4 bars), one where the caches are warmed up with an-
other execution of Q3 using different parameters (central 4
bars), and one where the caches are warmed up with an exe-
cution of Q12 (rightmost 4 bars). For each setup, we classify
the misses based on the data structures that cause them. The
number of misses is normalized to 100 for the leftmost setup.

When the caches are not warmed up, most of the misses
are distributed between metadata, indices, and database data.
This is consistent with measurements for similar cache con-
figurations shown in Figure 10-(b). If the cache is warmed up
with another 3, the number of misses on indices decreases.
This is because indices are reused across Index queries as well
as within Index queries. Database data, instead, is reused lit-
tle. Two Index queries are not likely to access many common
tuples. We note that the large reduction in metadata misses
can only be attributed to random timing effects in the execu-
tion of the workload. This is because the misses supposedly
saved by the warm cache cannot be of the coherence type.
Coherence misses are largely unaffected by the initial cache
state. Finally, if the cache is warmed up with Q12, database
data and indices are reused across queries. Indeed, since Q12
is a Sequential query, it accesses all the tuples in a table (table
lineitem). Some of these tuples are reused by Q3. In addition,
Q12 accesses a second table via indices (table order). These
indices can also be reused by Q3.

Figure 12-(b) shows the number of misses in the secondary
cache for an execution of Q12. As in the previous chart, we
consider a setup where the caches are not warmed up (left-
most 4 bars), one where the caches are warmed up with an-
other execution of Q12 using different parameters (central 4
bars), and one where the caches are warmed up with an ex-
ecution of Q3 (rightmost 4 bars). The bars are organized as
in Figure 12-(a). When the caches are not warmed up, nearly
all of the misses occur on database data. This is consistent
with measurements for similar cache configurations shown in
Figure 10-(f). If the cache is warmed up with another Q12,
most of the misses on database data disappear. The reason
is that the linestem tuples accessed sequentially by the first
Sequential query are reused by the second Sequential query.
Therefore, there is much temporal locality across Sequential
queries. Finally, if the cache is warmed up with Q3, only a
few misses on the database data disappear. This is because
the Q3 Index query accesses only a few of the lineitem tuples.
The Q12 query that follows Q3 can only reuse those.

Overall, therefore, we conclude that if two Sequential
queries accessing the same table are run consecutively, there
is much reuse of data, namely the entire table. In other cases,
there is some reuse of database indices or data, but the mag-
nitude of the savings is substantially smaller. Note that, for
reuse to occur, the two Sequential queries involved do not
have to be of the same type. In fact, reuse occurs across
the 5 TPC-D queries that read the lineitem table using the
Sequential Scan algorithm. The amount of reuse, of course,

is limited by the size of the table being scanned and by the
size of the caches. For some tables, it is clear that very large
caches might be needed to capture the whole reuse.
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Figure 12: Breakdown of the number of misses in the
secondary cache for Q3 and Q12.

6 Data Prefetching Optimization

In Section 5.2.1 we concluded that accesses to database data
have good spatial locality, especially in Sequential queries.
Consequently, the use of longer cache lines would be beneficial.
However, we also observed that, as cache lines increase in size,
misses on private data and metadata also go up (Charts (c)
to (f) in Figure 8). One way to avoid this overhead and still
capture the benefits of long lines for database data is to use se-
quential prefetching for database data only. In this section, we
evaluate the impact of a very simple form of prefetching. For
each access to database data, the hardware issues prefetches
for the next 4 primary cache lines. The prefetched lines are
loaded into the primary cache.

This optimization is trying to reduce the Data time in Fig-
ure 6-(b). It is clear from the figure that it can only have a
modest impact on the total execution time of Q6 and Q12.
Furthermore, it can barely change the total execution time of
Q3. Nevertheless, we apply it to Q3 too. The execution time
with and without prefetching is shown in Figure 13. For each
query, the figure shows the execution time for the baseline
architecture (Base bars) and the baseline architecture plus
prefetching (Opt bars). The results show that, for Q6 and
Q12, the gains are a modest 5-6%. This is because it can
be shown that prefetching eliminates only about one third of
the Data time in Figure 6-(b). In addition, it causes primary



cache contention and extra misses that disrupt accesses to pri-
vate data. As a result, PMem increases slightly in Figure 13.
For Q3, this disruption causes a slowdown to the query. Over-
all; therefore, we suggest using this technique for Sequential
queries only and, if the Busy time is so high as in Figure 6-(a),
expect modest gains.

120 +
100
80
60
40 +

20 +

Normalized Execution Time [%]

Base Opt
Q3 Q6 Q12

Base Opt Base Opt

Figure 13: Impact of simple prefetching support for
database data on the execution time of the queries.

7  Summary

Although cache-coherent shared-memory multiprocessors are
often used to run commercial workloads, we did not have much
insight into how these workloads use the memory subsystem of
these machines. In this paper, we have addressed this problem
for representative DSS queries running on a multiprocessor
emulation of Postgres95. We have found that, from a memory
performance point of view, queries differ largely depending on
whether they access the database data via indices or by se-
quentially scanning the tuples. The former queries, which we
call Index queries, suffer most of their shared-data misses on
indices and lock-related metadata. The latter queries, which
we call Sequential queries, suffer most of their shared-data
misses on the database tuples. We have found that both In-
dex and Sequential queries can exploit spatial locality and,
therefore, can benefit from relatively long cache lines. We
have also found that shared data has little temporal local-
ity inside queries. Private data, however, has some temporal
locality. In addition, there is temporal locality across Se-
quential queries. Finally, we have found that the performance
of Sequential queries can be improved moderately with data
prefetching.

Overall, this work is a first step towards understanding the
memory performance of databases. The work remaining is
huge. It is necessary to address other issues, including more
complex queries that involve nested queries, other types of
queries that contain frequent writes, and intra-query paral-
lelism.
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