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for commercial workloads running on these machines, there isno solid understanding of why the workloads perform the waythey do. In particular, there is very little understanding of thememory behavior of these workloads. This issue is importantbecause, in shared-memory multiprocessors, the performanceof an application is often determined by how well it exploitsthe memory hierarchy. Furthermore, with the continuous re-duction in the price of memory, it may soon be feasible formedium-sized databases to completely reside in memory dur-ing execution on a shared-memory multiprocessor. Therefore,how well the memory hierarchy is exploited will directly de-termine the performance of the workload.Databases have several characteristics that are likely to af-fect how they use the memory hierarchy. Speci�cally, theyhave complex locking schemes, directly manage the blocks ofdata read into memory from the I/O devices, and use complexdata structures to manage database data e�ciently. However,an analysis of how these characteristics a�ect memory use isnot trivial. It usually involves monitoring the addresses refer-enced by the processors as well as other events. Furthermore,the information extracted from the address traces needs tobe combined with an analysis of the database source code todetermine the operations executed and the data structuresaccessed when the address references were issued. While thisis not a problem for scienti�c workloads like Splash 2 [13],where the sources are publicly available, it is usually hardfor commercial workloads. Obtaining the source code of areasonably-tuned database management system (DBMS) isdi�cult because it is usually proprietary.For these reasons, there is relatively little previous workin this area. In addition, most of the work has addressedthe performance of these workloads from a high-level pointof view. For example, DeWitt and Gray [3] studied paralleldatabase systems and indicated that a shared-nothing archi-tecture seems to be more cost-e�ective than a shared-memoryarchitecture. Thakkar and Sweiger [9] looked at the perfor-mance of On-Line Transaction Processing (OLTP) workloadsrunning on a Sequent cache-coherent shared-memory multi-processor and highlighted the importance of process schedul-ing and the I/O capability of the machine. Maynard et al [6]contrasted the cache performance of technical and commer-cial workloads and concluded that the latter is often worse.Eickemeyer et al [4] showed that a signi�cant performanceimprovement can be obtained for OLTP workloads when amultithreaded processor is used. Finally, other studies thathave involved database workloads include the work by Cve-tanovic and Bhandarkar [1] on a DEC Alpha AXP system,Torrellas et al [10] on an SGI multiprocessor, and Rosenblumet al [7] on a simulated SGI multiprocessor. In general, thesestudies agree on the relatively worse memory performance ofcommercial workloads. However, they do not give us the in-sight of what the actual memory access patterns are like.In this paper, we analyze in detail the memory access pat-



terns of three queries that are representative of Decision Sup-port Systems (DSS) workloads. DSS databases store largequatities of data. Queries to these databases are usually read-only and extract useful information in order to aid decisionmaking. We use three queries from the standard TPC-Dbenchmark [11] and simulate the memory hierarchy of a 4-processor cache-coherent NUMA running a memory-residentdatabase. We use a modi�ed version of Postgres95 [8, 14], apublic-domain database from the University of California atBerkeley.Our analysis shows that the memory use of queries dif-fers largely depending on how the queries access the databasedata, namely via indices or by sequentially scanning therecords. The former queries, which we call Index queries, suf-fer most of their shared-data misses on the indices and onlock-related metadata structures. The latter queries, whichwe call Sequential queries, su�er most of their shared-datamisses on the database records as they are scanned. An anal-ysis of the data locality in the queries shows that both Indexand Sequential queries exhibit spatial locality and, therefore,can bene�t from relatively long cache lines. In addition, we�nd that shared data is reused very little inside queries. How-ever, there is data reuse across Sequential queries. Finally, we�nd that the performance of Sequential queries can be im-proved moderately with data prefetching.This paper is organized as follows: Section 2 describes somebackground material on query processing and the workloadused; Section 3 presents the three queries that we trace; Sec-tion 4 describes Postgres95 and de�nes the methodology usedfor our analysis; Section 5 performs the analysis of the mem-ory performance; and Section 6 evaluates the impact of dataprefetching.2 Query Processing and TPC-DIn this section, we introduce some background material onquery processing and then describe the TPC-D DSS workloadthat we use.2.1 Query Processing2.1.1 Query OperationsIn the relational database model, data is stored in tables,also called relations. These tables are composed of recordscalled tuples. Each tuple contains �elds called attributes.A database query is composed of di�erent basic operations.Typical operations are Select, Join, Sort, Group and Aggre-gate. Each of these operations consumes the data in one ortwo tables of tuples and generates one table of tuples as aresult. Each of these operations can be implemented usingdi�erent algorithms.A select operation takes one table and generates anotherone that has all the tuples of the input table that satisfy agiven condition on a tuple attribute or a set of attributes. Thisoperation can be implemented with two algorithms: IndexScan select or Sequential Scan select. The �rst one uses anindex data structure to access only the tuples in the inputtable that satisfy the condition. The second one is used whenthere is no index structure on the attributes that are checked.Therefore, all the tuples in the input table have to be visited.A join operation takes two tables and produces one resulttable. A join selects a pair of tuples, one from each table,that have one or more attributes in common and that satisfya given condition. The result table contains the chosen pairs oftuples without replicating the common attributes. A join canbe implemented using di�erent algorithms. The best knownalgorithms are the Nested Loop, Merge, and Hash join. The

nested loop join simply uses a doubly nested loop to try tomatch each tuple of one table to all the tuples of the othertable. The merge join orders both input tables and then triesto match the two ordered streams of tuples. Finally, the hashjoin builds a hash table using one of the input tables and thenprobes it for each of the tuples of the other input table.The sort operation orders the tuples of a table based on thevalue of one attribute. The group operation generates a tablethat has one tuple for each group of tuples in the input tablethat have a common value in the grouping attribute. Finally,the aggregate operation generates a table where one or moreattributes of each tuple in the input table are modi�ed byan operation. This operation may be an arithmetic opera-tion. More information on these operations and the relationaldatabase model can be found in [2].2.1.2 Query ExecutionQueries can be written in several database languages. Forexample, Figure 1-(a) shows an example of a query written inSQL that will be analyzed later. A query that is submittedto a database system undergoes three di�erent steps, namelyparsing, optimization and execution. The parsing step checksfor the correctness of the query syntax and semantics.The optimization step rewrites the query into a QueryPlan Tree that contains the basic operations described in Sec-tion 2.1.1 in some order that minimizes the execution time.An example of such a tree is shown in Figure 1-(b). Theshape of the query plan trees depends on the database sys-tem that generates them. The database system that we usein our experiments generates left-deep trees. The tree is builtbased on heuristics and cost analysis of di�erent possible im-plementation alternatives. Usually, the optimization step isperformed at compile time to save time during the execution.However, some optimizations may be a function of certain pa-rameters that are only known at runtime. In those cases, theoptimization step is completed at runtime.Finally, in the execution step, the system performs thequery operations according to the query plan tree. Each nodein the tree corresponds to one of the basic operations describedpreviously. The leaves of the tree correspond to sequential orindex scans of the tables. Each child of a node representsthe ow of a stream of data to the node. The execution ofa left-deep tree is a depth-�rst recursive descend of the treethat scans the di�erent tables, transfers the data to the top-most node of the tree and, in the process, performs the basicoperations required by the query. To avoid the use of verylarge temporary tables, the results are passed tuple-by-tuplebetween the nodes in a pipelined manner. This approach ispossible for any node that does not require the whole inputdata before it can perform its operation. However, in the sortnodes, we need temporary tables to store the whole inputdata. Example executions of query plan trees are discussed indetail in Section 3.2.2 DSS Workloads and TPC-DOne of the most important classes of commercial workloads isDSS databases. These databases often store large quantitiesof information that is queried to make a decision. Typically,DSS queries are complex and access the data in a read-mostlymanner. A well-known benchmark that simulates a DSS sys-tem is TPC-D [11]. In this section, we �rst describe TPC-Dbriey and then examine its queries in detail.2.2.1 TPC-DTPC-D simulates an application for a wholesale supplier thatmanages, sells and distributes a product worldwide. The data



in TPC-D is organized in several tables. The most importantof the TPC-D relations are lineitem, order, part, customer,and supplier. The simulated company buys parts (stored intable part) from suppliers (stored in table supplier) and sellsthem to customers (stored in table customer). Each time anorder is placed by a customer, it is added to the order tableand the ordered parts are added to a list of ordered items(table lineitem). Any attribute of the tuples in these tablescan potentially be accessed via indices.2.2.2 TPC-D QueriesTPC-D has 17 read-only queries (Q1 to Q17) and 2 updatequeries (UF1 and UF2). Most of the queries are large andcomplex, and perform di�erent operations on the databasetables. Table 1 lists the operations performed by the read-only TPC-D queries when the query plan trees are generatedby the database system used in this paper. The databasesystem is Postgres95 and is described in Section 4.1. Theselect operations can be implemented by the sequential scan(SS) or the index scan (IS) algorithms. The join operationscan be implemented by the nested loop (NL), merge (M), orhash (H) join algorithms. In the table, we have grouped thequeries based on how the select operation is implemented.Such implementation, of course, is a function of the set ofindices that we added. From the table, we see that somequeries implement sequential scan selects only, while othersimplement index scan selects only, and others implement both.Table 1: Operations in the read-only TPC-D queries.Query Select Join Sort Group Aggr.SS IS NL M HQ1, Q4 p p p pQ6 p pQ15 p p pQ16 p p p p pQ2 p p pQ3, Q5,Q10, Q11 p p p p pQ8 p pQ7, Q9 p p p pQ12 p p p p pQ13 p p p p p pQ14, Q17 p p p pFrom the queries in the table, we chose three representativeones that we will examine in detail in the rest of the paper.Our choice is based on the fact that, as we will see, the typeof select algorithm used in the query largely determines thememory access patterns of the query. For this reason, wechose one query from each of the three groups in the table:Q3, Q6 and Q12. We do not examine any of the two queriesthat write data. This is because the locking support in thePostgres95 database is not as �ne-grained as in some of thetuned commercial databases (Section 4.1.1). Update queriesare much more demanding on the locking algorithm. In addi-tion, the update queries are not as complex as the read-onlyones.3 Memory Access Patterns ofTPC-D QueriesTo understand the performance of the memory hierarchy un-der TPC-D Queries Q3, Q6 and Q12, we devote this sectionto an analysis of the memory access patterns of these queries.This analysis will be used to explain the simulation resultsin Section 5. The database data is stored in shared-memory

bu�ers as will be described in Section 4.1.1. The queries arecoded in the limited form of SQL supported by the databasesystem that we use. In all cases, we coded the queries so thatthey have the same memory access patterns as if the querieswere coded in a system that supported a full SQL implemen-tation. Sometimes, this forced us to make small changes tothe code. Consequently, the SQL programs that we use tocode the queries do not compute exactly what the Transac-tion Processing Performance Council proposes. Their memoryaccess patterns, however, are those of a system with full SQLimplementation. In the following, we consider each query inturn.3.1 TPC-D Query Q3Q3 retrieves the unshipped orders of customers within a spe-ci�c market segment and dates. For example, a possible querycould retrieve all the orders from market segment \automo-bile" that have an order date prior to \February 3, 1995" andby date \March 19, 1995" had not yet been shipped. TheSQL code that we use for query Q3 and the query plan treegenerated by Postgres95 are shown in Figure 1.
SELECT
  lineitem.orderkey,
  SUM(lineitem.extendedprice) AS revenue1,
  SUM(lineitem.discount) AS revenue2,
  order.orderdate,
  order.shippriority
FROM
  customer, order, lineitem
WHERE
  customer.custkey = order.custkey AND
  lineitem.orderkey = order.orderkey AND
  customer.mktsegment = "segment" AND
  order.orderdate < "date1" AND
  lineitem.shipdate > "date2"
GROUP BY
  lineitem.orderkey,
  order.orderdate,
  order.shippriority
ORDER BY
  revenue1 USING >,
  order.orderdate;
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Lineitem(b)Figure 1: Query Q3. Chart (a) shows the SQL code,while Chart (b) shows the query plan tree. The num-bers inside the nodes of the tree correspond to state-ment numbers in the SQL code.The execution proceeds as follows. First, Q3 traverses tablecustomer to select those customers that belong to market seg-ment \segment". This is shown in clause (3) of Figure 1-(a)and is represented by the leftmost leaf of the tree in Figure 1-(b). Note that the table is accessed via indices and, therefore,only the tuples that match are ever accessed. Each time thata matching tuple is found, it is sent to the Nested Loop Join(1) node of the tree. This node passes the customer.custkey



attribute of the tuple to the Index Scan Select (4) node of thetree. At this point, the Index Scan Select (4) node searchesthe order table to �nd orders that belong to the same cus-tomer (clause (1) in Figure 1-(a)) and were placed previousto a certain date \date1" (clause (4) in Figure 1-(a)). Again,table order is accessed via indices. Every time one of thesetuples is found, it is passed to the Nested Loop Join (1) nodewhere it is joined with the customer tuple.The resulting tuple is passed to the Nested Loop Join (2)node. The order.orderkey attribute of the tuple is passed tothe Index Scan Select (5) node. There, the lineitem table isaccessed via indices to �nd all the lineitems with the same or-derkey (clause (2) in Figure 1-(a)) that have not been shippedby date \date2" (clause (5) in Figure 1-(a)). For each tuplethat matches, the Nested Loop Join (2) node performs thejoin.When the three tables have been completely searchedand all the necessary joins have been performed, the se-lected tuples are sorted in the Sort (6) node. Then,in the Group (6) node, the selected tuples are groupedby attributes lineitem.orderkey, order.orderdate, and or-der.shippriority (clause (6) in Figure 1-(a)). Finally, the Ag-gregate and Sort (7) nodes perform the aggregate and remain-ing sort operations speci�ed in the query.Most of the memory accesses to shared data in this queryare issued by the index scan operations. These operationsaccess two major shared data structures, namely the datatables and the indices. If we focus �rst on the data tables,we see that there is practically no temporal or spatial localityat the tuple level. Indeed, a given tuple is not accessed morethan once in the same query. Furthermore, two consecutivetuples are not necessarily related in anything and, therefore,are not necessarily accessed at similar times. All this is clear ifwe consider the tuples accessed in the query. The Index ScanSelect (3) node reads the customer tuples whose mktsegmentattribute is \segment". The Index Scan Select (4) node in turnreads the order tuples whose custkey is equal to the custkey ofone of the selected customer tuples. Finally, the Index ScanSelect (5) node reads the lineitem tuples whose orderkey isequal to the orderkey of one of the selected customer-ordertuple pairs.Accesses within a tuple, however, have spatial locality. Thisis because, for a given tuple, several attributes are read. Forexample, both the mktsegment and custkey attributes of agiven customer tuple are read. However, no signi�cant tem-poral locality is present within a tuple. This is because thedatabase is optimized so that the same attribute does not haveto be read twice in this query.Accesses to the index data structures have both temporaland spatial locality. For example, consider the index tree forthe custkey attribute of the order table. There is temporallocality because the top levels of the index tree are re-readevery time a new customer is considered. There is spatiallocality because consecutive locations of the index b-tree areread when the query searches for the orders of a given cus-tomer.Finally, we consider data reuse across queries. The indexdata structures are clearly reused across queries. However, thedata tables are not likely to be reused. This is because eachquery accesses its own set of tuples. Tuple reuse is only pos-sible if the two queries have clauses with the same or similarattributes, which force them to access some common tuples.The select nodes in Figure 1 read shared data and makecopies of the selected tuples into private data. The rest of thenodes work on this private data. Private data accesses havesome spatial locality because, sometimes, several attributes ofthe same tuple are read close in time. They also have sometemporal locality because the same private storage is reusedfor all the selected tuples.

3.2 TPC-D Query Q6Q6 quanti�es the revenue increase that would have resultedfrom eliminating discounts in a given percentage range duringa given year. For example, a possible query could be to com-pute the di�erence in revenue between \February 3, 1994" and\February 3, 1995" for the range of products discounted by15%. The SQL code that we use for query Q6 and the queryplan tree generated by Postgres95 are shown in Figure 2.
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SELECT
  SUM(lineitem.extendedprice) AS revenue1,
  SUM(lineitem.discount) AS revenue2
FROM
  lineitem
WHERE
  lineitem.shipdate >= "date" AND
  lineitem.shipdate < "date" + "1 year" AND
  lineitem.discount > "discount" − 0.01 AND
  lineitem.discount < "discount" + 0.01 AND
  lineitem.quantity < "quantity";(a)
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Lineitem(b)Figure 2: Query Q6. Chart (a) shows the SQL code,while Chart (b) shows the query plan tree.This query is very simple. The query traverses the lineitemtable sequentially, visiting all the tuples. The tuples that sat-isfy the select clauses shown in Figure 2-(a) are passed up tothe Aggregate node. In the Aggregate node, two arithmeticoperations are performed. Clearly, nearly all of the sharedmemory accesses in the query are issued by the sequential scanoperation. They are directed to the lineitem table. For eachtuple, the query reads the attributes to be checked in the selectconditions, namely lineitem.shipdate, lineitem.discount, andlineitem.quantity. If the clauses are satis�ed, the query alsoreads the attributes needed in the Aggregate node, namelylineitem.extendedprice and lineitem.discount. There is no ac-cess to indices.There is abundant spatial locality in these accesses. Indeed,the query reads several attributes of the same tuple and, inaddition, it reads consecutive tuples. There is, however, noreuse of a tuple within a query and, therefore, there is notemporal locality.There is reuse and, therefore, temporal locality, acrossqueries. This is because every time that Q6 is executed, itreads the whole lineitem table. Unfortunately, lineitem islarge (approximately 70% of the total database data). In ourexperiments, it takes about 12 Mbytes.For this query, the locality and reuse of private data is thesame as in Q3. There is no additional spatial locality acrosstuples because all the selected tuples reuse the same storage.3.3 TPC-D Query Q12Q12 determines whether selecting less expensive modes ofshipping is negatively a�ecting critical-priority orders by de-livering orders after the committed date. For example, a pos-sible query would be to retrieve the orders that have been de-livered after the committed date for a one year interval start-ing on \February 3, 1994" using the \regular air" and \air"shipping modes. The SQL code that we use for query Q12and the query plan tree generated by Postgres95 are shown inFigure 3.



SELECT
  lineitem.shipmode,
  order.orderpriority
FROM
  order, lineitem
WHERE
  order.orderkey = lineitem.orderkey AND
  (lineitem.shipmode = "shipmode1" OR
   lineitem.shipmode = "shipmode2") AND
  lineitem.commitdate < lineitem.receiptdate AND
  lineitem.shipdate > lineitem.commitdate AND
  (lineitem.receiptdate >= "date" AND
   lineitem.receiptdate < "date" + "1 year")
GROUP BY
  lineitem.shipmode
ORDER BY
  lineitem.shipmode
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Select (1) (b)Figure 3: Query Q12. Chart (a) shows the SQL code,while Chart (b) shows the query plan tree.The execution proceeds as follows. Table lineitem is tra-versed sequentially by the Sequential Scan Select (2) node.Each tuple is selected with clauses (2) in Figure 3-(a). Eachtuple that satis�es these clauses is passed to node Sort (1).There, a temporary table is formed and its tuples are sortedon attribute lineitem.orderkey. The sorting is necessary be-cause the Merge Join (1) node requires the input tables to besorted. Next, the Sequential Scan Select (1) node reads thesorted tuples one by one and passes them to the Merge Join(1) node. The latter node passes attribute lineitem.orderkeyto the Index Scan Select (1) node, which selects the tuplesin the order table that have the same orderkey. The selectedtuples are joined one by one in the Merge Join (1) node andthen sorted and grouped in the next few nodes.The memory access patterns in this query are a combina-tion of those in queries Q3 and Q6. Indeed, the locality andreuse patterns of the accesses to the lineitem table are similarto those of the accesses in Q6. In addition, the locality andreuse patterns of the accesses to the order table are similar tothose of the accesses in Q3. Likewise, the locality and reuseof private data is the same as in Q3 and Q6.3.4 SummaryThe analysis in this section suggests that there are two cleartypes of access patterns. They result from the way databasetables are accessed, namely sequentially or via indices. If themajority of the accesses in a query are sequential, we call thequery Sequential query, while if the majority of the accessesare via indices, we call the query Index query.In both types of queries, data accesses within a tuple arelikely to have spatial locality. However, in Sequential queries,there is the additional e�ect of spatial locality across tuplesand, if the cache space in the node is large enough, data reuseacross queries. In Index queries, index structures have tem-poral and spatial locality within a query and, in addition, are

reused across queries.4 Experimental SetupTo validate our analysis and get a deeper insight into howdatabases exercise memory hierarchies, we run Q3, Q6, andQ12 on a real database and simulate the resulting memoryaccesses. In this section, we describe the experimental setupand in the next one, we discuss the results obtained. Ourexperimental setup is based on the Postgres95 database in-terfaced to an execution-driven simulator of a multiprocessormemory system. In this section, we examine Postgres95, theissues involved in scaling down the system, and �nally thesimulation system.4.1 Postgres95Postgres95 is a public-domain, client-server share-everythingdatabase developed at the University of California-Berkeley [8, 14]. It is a reduced and revised version of thePostgres database [8]. Postgres has led to commercial prod-ucts, now being commercialized by Informix. Postgres95 runson numerous platforms, is fairly popular, and is considerablywell-tuned for a system developed in academia.We chose Postgres95 for at least two practical reasons. Firstof all, we have its source code. This capability, not easilyattainable for commercial databases like Oracle or Informix,is practically a requirement for a study of this type. Sec-ondly, although Postgres95 was developed to run on a unipro-cessor machine, it supports multiple concurrent transactionswhere processes communicate via shared memory. This, as wewill see below, makes it possible to emulate a multiprocessordatabase system fairly well. To understand the behavior ofPostgres95 better, we now examine its main data structuresand then discuss how we emulate a multiprocessor.4.1.1 Postgres95 Data StructuresThe major parts of Postgres95 are shown in Figure 4. Allthe boxes shown represent software data structures. At thetop of the �gure, we show 4 processes with their own privatesoftware caches. These caches store data that is rarely mod-i�ed, for example the system catalog. The Shared MemoryModule is shown in the lower portion of the �gure. In thisspace, we have the Invalidation Cache, which interacts withthe private caches to maintain their contents consistent. Wealso have the Lock Management Module with its two hashtables (Lock Hash and Xid Hash), which determine if a lockcan be acquired or not. The access to these data structuresis protected by a lock called LockMgrLock. Finally, we havethe Bu�er Cache Module. This module contains the actualapplication data processed by the database. It also containsthe indices. This module manages the pages of applicationdata and indices similarly to how the operating system man-ages the pages of other applications. This module has threecomponents. The Bu�er Blocks are 8-Kbyte pages of memorythat hold application data or indices. The Bu�er Descriptorsare control structures for the bu�er blocks. Finally, the Bu�erLookup Hash is a hash table that is used to �nd bu�er de-scriptors. The access to the Bu�er Blocks is protected by alock called BufMgrLock.Postgres95 supports two types of locks, namely those thatprotect database data and those that protect the data struc-tures of Postgres95. We call them Datalocks and Metalocksrespectively. While metalocks are simple spinlocks, datalocksare more complex, since they are multi-type and multi-level.For example, they can be of type read or write and of levelrelation, page or tuple. The purpose of having all these types
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The second correction has to do with misses on privatedata. As we described in Section 3, the tuples processed byPostgres95 may be copied from the shared address space to theprivate one. Large chunks of private heap space are sometimesallocated for tables of tuples after the join operations. Post-gres95 operates on these tables as it performs sort or groupoperations. Consequently, private references to the heap arean integral part of Postgres95. Furthermore, it can be arguedthat the misses on private heap data structures should some-how scale up and down with the size of the database. How-ever, the misses on the other private data, namely stack andstatic variables, should not scale with the size of the database.If we simply reduce the cache sizes, misses on private stackand static variables will swell disproportionally to their trueweight. Consequently, the second correction that we do is toassume the all accesses to private stack and static variableshit in the cache.Finally, it could be argued that misses on shared Postgres95metadata also need a similar correction. Such metadata in-cludes locks, hash tables, or bu�er headers. Experimentaldata, however, shows that this is not the case. These datastructures have a tiny footprint and, as we will see, most theirmisses are caused by coherence activity. Smaller caches do notchange these misses.4.3 Workloads and ArchitectureIn our experiments, we run one query of the same type oneach node. Although the queries are of the same type, eachof them has di�erent parameters, chosen according to theTPC-D speci�cations. We record statistics for the completeexecution stage of the queries, from start to �nish. We donot run any warm-up query before collecting the statisticsbecause, depending on the type of query, there could be datareuse. Without any instrumentation, the queries that we ex-amine take 6-10 seconds to run on a 150 MHz workstation.With the tracing and simulation code enabled, the queries areslowed down by a factor of 1500. Since queries do not haveintra-query data reuse, the traces do not have any transientperiod that we might want to discard.The simulation setup is as follows. The object codes ofthe query and Postgres95 are linked together to produce anexecutable. Then, the executable is fed to Mint [12], anexecution-driven multiprocessor simulation package. Mintperforms an interleaved execution of all processes, correctlymodeling all the aspects of the shared-memory and synchro-nization activity. In addition, Mint generates events on-the-y to a back-end architecture simulator. The setup of theexperiments is outlined in Figure 5.
Query Q3, Q6, Q12

Database Postgres95

Results

Mint Simulator

ConfigurationFigure 5: Experimental setup.The simulated architecture is a 4-processor directory-basedcache-coherent NUMA shared-memory multiprocessor. Eachnode of the architecture includes a simulated o�-the-shelf 500MHz processor with a 16-entry write bu�er, a 4-Kbyte on-chip primary cache with 32-byte lines, and a 128-Kbyte o�-chip secondary cache with 64-byte lines. The primary cacheis direct-mapped, while the secondary cache is 2-way set-associative. Processors stall on read misses and on write bu�eroverow. For simplicity, we model an interconnection networkwhere a message traveling from one node to another takes a�xed 100 cycles. All contention in the system is modeled,except in the network, where the simulator assumes a con-



stant delay. Overall, on a primary cache miss, the round-triplatency time for a request satis�ed by the secondary cache,local memory, and remote node in a 2-hop or 3-hop transac-tion is 16, 80, 249, and 351 cycles respectively. Consequently,a 2-hop remote transaction takes under 500 ns. This archi-tecture, which we call baseline, is modi�ed in the course ofour experiments. We change the sizes of the caches and cachelines. In all cases, however, the size of the line in the primarycache is half the size of the line in the secondary cache. Whenwe mention only one line size we refer to the line size of thesecondary cache.5 EvaluationWe now present the results of the simulations. We start bystudying the overall memory behavior of the queries in Sec-tion 5.1. Then, in Section 5.2, we examine the locality of thememory accesses in detail.5.1 Overall Memory BehaviorA breakdown of the execution time of the queries for the base-line architecture is shown in Figure 6-(a). The bars are nor-malized and then broken down into three categories, namelyMem, MSync, and Busy. Mem is the processor stall time dueto memory accesses not satis�ed by the primary cache. Itincludes the e�ect of read misses and write bu�er overow.MSync is the time spent synchronizing in metalocks. Thetime spent synchronizing in datalocks is negligible. This isbecause the queries are read-only and, therefore, there is nocontention for locks that protect application data. Finally,Busy includes the rest of the processor cycles.
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(b)Figure 6: Execution time (Chart (a)) and stall timedue to memory accesses (Chart (b)) for Q3, Q6 andQ12.Figure 6-(a) shows that Busy accounts for 50-70% of theexecution time, while Mem accounts for 30-35%. Since thispaper focuses on the impact of memory accesses, we concen-trate on the Mem time. Figure 6-(b) normalizes the Memtime and then decomposes it based on the data structuresthat cause the memory stall. There are four main types ofdata structures, namely database data (Data), database in-dices (Index), database control variables (Metadata), and pri-vate data structures (Priv). From the �gure we can observethat, while the portion due to private data does not changemuch across queries, the contribution of the rest of the datastructures shows two di�erent behaviors. First, in Q3, nearlyall of it is due to metadata and indices. This is because Q3accesses all the data via indices. It makes use of the controlstructures and indices to read only the necessary database tu-ples. This is the typical behavior of what we have called Indexqueries in Section 3.4. The second behavior is exhibited byboth Q6 and Q12. In these two queries, the contribution of

the shared data structures is dominated by the accesses tothe database data. This pattern is typical of queries thatread large tables sequentially, without using indices. We havecalled these queries Sequential queries in Section 3.4. Notethat while Q12 has both a sequential and an index scan se-lect, the former dominates.To gain further insight into the stall time due to mem-ory accesses, we classify the read misses in the primary andsecondary caches according to the data structures that causethem. The classi�cation is shown in Figure 7. The data struc-tures that su�er a signi�cant number of misses are: privatedata (Priv), database data (Data), database indices (Index),and several metadata structures, including bu�er descriptors(BufDesc), the bu�er lookup hash table (BufLook), the Lockand Xid hash tables (LockHash and XidHash respectively),and the LockMgrLock spinlock (LockSLock). In the �gure,each bar is divided into three di�erent types of misses, namelycold (Cold), conict (Conf), and coherence (Cohe). In eachchart, the sum of all the bars is 100.
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] (f) Q12: secondary cacheFigure 7: Normalized number of misses in the primaryand secondary caches classi�ed according to the datastructures missed on.The leftmost charts of Figure 7 show that most of the missesin the primary cache are due to accesses to private data. Mostof these misses are of the conict type. The reason is thatthere are about 5 times more accesses to private data thanto shared data. While the size of private data is relativelysmall, it is large enough to overow the primary caches. Therightmost charts of Figure 7 show that the misses in the sec-ondary cache are a function of the type of query. While Q3has a mix of misses from metadata, indices, database dataand private data, most of the misses in Q6 and Q12 occur ondatabase data. In Q3, many of the metadata misses occur onLockSLock. As explained in Section 4.1.1, this data structure



is the lock that controls the access to the Lock ManagementModule, which manages the multi-level multi-type data lock-ing. This lock is necessary to fully support concurrency ofdata accesses in Postgres95 and is continuously accessed byall processors. The �gure also shows that metadata missesare usually due to coherence activity and, to a lesser extent,cache conicts. Data misses, on the other hand, are largelydue to startup e�ects. This is due to the large amount ofdatabase data that is accessed and the little reuse present.Index misses, on the other hand, are present only in the Indexquery Q3. Indices are large, read-mostly data structures. Asa result, index misses are due to start-up e�ects and cacheconicts. Overall, therefore, for the secondary cache, we seethat Sequential queries su�er mostly cold misses, while Indexqueries su�er a combination of coherence, conict, and coldmisses.The absolute data miss rate of the caches is as follows. Inthe primary cache, the miss rates are 5.5%, 3.4%, and 4.8%for Q3, Q6, and Q12 respectively. In the secondary cache, theglobal miss rates are 0.8%, 0.6%, and 0.5% for Q3, Q6, andQ12 respectively.5.2 Locality of AccessesThe number of misses on the di�erent data structures directlydepends on the locality of the memory access patterns. Inthis section we analyze the spatial and temporal locality ofthe data accessed in the queries.5.2.1 Spatial LocalityIn Section 3 we indicated that accesses to database data tendto have good spatial locality. When a tuple is accessed, it islikely that several of its attributes will be referenced. Fur-thermore, in Sequential queries, there is also very good spa-tial locality across tuples. Accesses to index structures alsotend to have good spatial locality because parts of the indexdata structure are traversed sequentially. Finally, metadata isunlikely to have spatial locality because of the diversity andsmall size of its data structures.To validate these hypotheses, we measure the variation ofthe number of misses with the line size of the caches. Fig-ure 8 shows, for each query, the number of misses in the pri-mary cache (leftmost charts) and secondary cache (rightmostcharts) for di�erent cache line sizes. All the other parame-ters correspond to the baseline architecture. The charts arenormalized to 100 for the baseline con�guration, which has 32-byte primary cache lines and 64-byte secondary cache lines.In each chart, the misses are decomposed into those su�eredon Priv, Data, Index, and Metadata data structures.From the leftmost charts we see that the number of misseson private data in the primary cache increases with the linesize. The reason is the poor locality of the accesses to heapdata. By increasing the line size while maintaining the cachesize, we are reducing the number of lines in the cache and,therefore, inducing more conict misses. The database data,however, bene�ts from longer lines because it has good spatiallocality. This is true in the primary caches and, especially, inthe secondary caches (rightmost charts). In the two Sequentialqueries (Q6 and Q12), the misses on database data decreasespectacularly as the line size increases. For Q3, the misseson both database data and indices also decrease with the linesize. This shows that indices have good spatial locality too.The behavior of the metadata, however, is irregular. In allqueries, its misses decrease until 64 bytes and then increase.This indicates that the spatial locality of metadata is lowerthan the other data structures. Finally, the misses on privatedata decrease with the line size. Private accesses, therefore,also have some spatial locality. However, their locality cannotbe captured by the small primary cache.

The impact of changing the line size on the execution timeof the queries is shown in Figure 9. For each query, the barsin the �gure are normalized to the bars for the baseline con�g-uration. Each bar is divided like in Figure 6-(a) except thatwe split the Mem time into the contribution of the accessesto shared data structures (SMem) and the accesses to privatedata structures (PMem). The �gure shows that, irrespectiveof the query, two trends occur as we increase the size of thecache line. On the one hand, PMem tends to increase after16-byte secondary cache lines. This is because private datahas poor primary cache performance. Longer lines cause moremisses. On the other hand, SMem decreases as we increase thecache line. This is due to the good spatial locality of databasedata and indices. With longer lines, each miss takes longerto satisfy, but there are many fewer misses. When the twotrends are combined, we see that the minimum for the totalexecution time is obtained for 64-byte secondary cache lines.Overall, therefore, we conclude that relatively long cache lineslike those with 64 bytes perform well for these DSS queries.
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(b) Q3: secondary cache
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(c) Q6: primary cache | |
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(d) Q6: secondary cache
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(e) Q12: primary cache | |
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(f) Q12: secondary cacheFigure 8: Number of misses on the di�erent datastructures for several cache line sizes. In each chart,the number of misses is normalized to the baseline con-�guration (32-byte primary cache lines and 64-bytesecondary cache lines.)
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Figure 9: Execution time for di�erent cache line sizes.Each bar is identi�ed by the size of the secondary cacheline.5.2.2 Temporal LocalityTemporal locality can be exploited within a query or acrossqueries. In this section, we consider each case in turn. Forthis part of the study, we use a �xed line size of 64 bytes forsecondary caches.Intra-Query Temporal LocalityIn Section 3 we indicated that database data is not reusedwithin a query. Consequently, there is no temporal localityand, as a result, large caches should not make a di�erence inthe miss rate of the database data. In reality, a close look atthe traces reveals that attributes are often accessed a secondtime immediately after they are �rst accessed. The reason isthat a given attribute is �rst read in a scan select to see if itsatis�es a certain condition. If the tuple it belongs to satis-�es all the conditions, then the attribute is then read againand copied to private storage. This reuse, however, occursimmediately and, whether or not it causes a miss cannot bea�ected by the cache size. Therefore, we do not consider it.The index data structure, instead, is often reused within aquery for Index queries. Speci�cally, the top level nodes ofits b-tree are traversed very frequently. Finally, it is hard todetermine the reuse of metadata given its complex structure.To validate our observations, we measure the variation ofthe number of misses with the cache size. Figure 10 shows, foreach query, the number of misses in the primary cache (left-most charts) and secondary cache (rightmost charts) as thecache sizes change from 4-Kbyte primary and 128-Kbyte sec-ondary caches to 256-Kbyte primary and 8-Mbyte secondarycaches. The charts are normalized to 100 for the baseline con-�guration, which has 4-Kbyte primary caches and 128-Kbytesecondary caches. In each chart, the misses are decomposedinto those su�ered on Priv, Data, Index, and Metadata datastructures.The most obvious trend in the primary cache charts is thatmisses on private data decrease signi�cantly. This is consis-tent with the data in Section 5.2.1, which showed that privatedata su�ers many misses in the primary cache and few in thesecondary one. Consequently, private data is reused. The Q3chart also shows that metadata and, as expected, indices havesome temporal locality for Index queries. Focusing now on thesecondary cache charts, it is clear that database data has notemporal locality. In all three queries, the curve for databasedata is at. The Q3 chart shows that, again, metadata andindices have temporal locality for Index queries. These resultsare consistent with the discussion of Section 3.4.The impact of changing the cache size on the executiontime of the queries is shown in Figure 11. For each query,the bars in the �gure are normalized to the bars for the base-line con�guration. Each bar is divided like in Figure 9. The

�gure shows that, as the caches increase in size, the queriesrun faster. Most of the speedup, however, comes from thereduction of misses on private data (PMem category). In theQ3 Index query, the temporal locality of indices and metadataalso helps reduce the execution time (SMem category). Forthe other queries, however, the speedups are small becausedatabase data has no temporal locality within queries.
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(b) Q3: secondary cache
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(c) Q6: primary cache | |
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(d) Q6: secondary cache
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(e) Q12: primary cache | |
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(f) Q12: secondary cacheFigure 10: Number of misses on the di�erent datastructures for several cache sizes. In each chart, thenumber of misses is normalized to the baseline con�g-uration (4-Kbyte primary caches and 128-Kbyte sec-ondary caches).Inter-Query Temporal LocalityFinally, we evaluate data reuse across queries. In our experi-ments, we focus only on queries Q3 and Q12. This is becauseQ6 behaves like Q12. We measure and compare the numberof misses in Q3 when the query runs with cold-started caches,when it runs right after another Q3 query, and when it runsright after a Q12 query. We do the same thing for Q12. Inour simulations, we use a 1-Mbyte primary cache and a 32-Mbyte secondary cache. We use these very large caches toidentify the upper bound on the data reuse. In a real system,of course, the data reuse when two queries are run in sequencewill be smaller.Figure 12-(a) shows the number of misses in the secondarycache for an execution of Q3. We show data for our threesetups, namely one where the caches are not warmed up (left-
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Figure 11: Execution time for di�erent cache sizes.most 4 bars), one where the caches are warmed up with an-other execution of Q3 using di�erent parameters (central 4bars), and one where the caches are warmed up with an exe-cution of Q12 (rightmost 4 bars). For each setup, we classifythe misses based on the data structures that cause them. Thenumber of misses is normalized to 100 for the leftmost setup.When the caches are not warmed up, most of the missesare distributed between metadata, indices, and database data.This is consistent with measurements for similar cache con-�gurations shown in Figure 10-(b). If the cache is warmed upwith another Q3, the number of misses on indices decreases.This is because indices are reused across Index queries as wellas within Index queries. Database data, instead, is reused lit-tle. Two Index queries are not likely to access many commontuples. We note that the large reduction in metadata missescan only be attributed to random timing e�ects in the execu-tion of the workload. This is because the misses supposedlysaved by the warm cache cannot be of the coherence type.Coherence misses are largely una�ected by the initial cachestate. Finally, if the cache is warmed up with Q12, databasedata and indices are reused across queries. Indeed, since Q12is a Sequential query, it accesses all the tuples in a table (tablelineitem). Some of these tuples are reused by Q3. In addition,Q12 accesses a second table via indices (table order). Theseindices can also be reused by Q3.Figure 12-(b) shows the number of misses in the secondarycache for an execution of Q12. As in the previous chart, weconsider a setup where the caches are not warmed up (left-most 4 bars), one where the caches are warmed up with an-other execution of Q12 using di�erent parameters (central 4bars), and one where the caches are warmed up with an ex-ecution of Q3 (rightmost 4 bars). The bars are organized asin Figure 12-(a). When the caches are not warmed up, nearlyall of the misses occur on database data. This is consistentwith measurements for similar cache con�gurations shown inFigure 10-(f). If the cache is warmed up with another Q12,most of the misses on database data disappear. The reasonis that the lineitem tuples accessed sequentially by the �rstSequential query are reused by the second Sequential query.Therefore, there is much temporal locality across Sequentialqueries. Finally, if the cache is warmed up with Q3, only afew misses on the database data disappear. This is becausethe Q3 Index query accesses only a few of the lineitem tuples.The Q12 query that follows Q3 can only reuse those.Overall, therefore, we conclude that if two Sequentialqueries accessing the same table are run consecutively, thereis much reuse of data, namely the entire table. In other cases,there is some reuse of database indices or data, but the mag-nitude of the savings is substantially smaller. Note that, forreuse to occur, the two Sequential queries involved do nothave to be of the same type. In fact, reuse occurs acrossthe 5 TPC-D queries that read the lineitem table using theSequential Scan algorithm. The amount of reuse, of course,

is limited by the size of the table being scanned and by thesize of the caches. For some tables, it is clear that very largecaches might be needed to capture the whole reuse.
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(a) Misses in Q3
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(b) Misses in Q12Figure 12: Breakdown of the number of misses in thesecondary cache for Q3 and Q12.6 Data Prefetching OptimizationIn Section 5.2.1 we concluded that accesses to database datahave good spatial locality, especially in Sequential queries.Consequently, the use of longer cache lines would be bene�cial.However, we also observed that, as cache lines increase in size,misses on private data and metadata also go up (Charts (c)to (f) in Figure 8). One way to avoid this overhead and stillcapture the bene�ts of long lines for database data is to use se-quential prefetching for database data only. In this section, weevaluate the impact of a very simple form of prefetching. Foreach access to database data, the hardware issues prefetchesfor the next 4 primary cache lines. The prefetched lines areloaded into the primary cache.This optimization is trying to reduce the Data time in Fig-ure 6-(b). It is clear from the �gure that it can only have amodest impact on the total execution time of Q6 and Q12.Furthermore, it can barely change the total execution time ofQ3. Nevertheless, we apply it to Q3 too. The execution timewith and without prefetching is shown in Figure 13. For eachquery, the �gure shows the execution time for the baselinearchitecture (Base bars) and the baseline architecture plusprefetching (Opt bars). The results show that, for Q6 andQ12, the gains are a modest 5-6%. This is because it canbe shown that prefetching eliminates only about one third ofthe Data time in Figure 6-(b). In addition, it causes primary



cache contention and extra misses that disrupt accesses to pri-vate data. As a result, PMem increases slightly in Figure 13.For Q3, this disruption causes a slowdown to the query. Over-all, therefore, we suggest using this technique for Sequentialqueries only and, if the Busy time is so high as in Figure 6-(a),expect modest gains.
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Figure 13: Impact of simple prefetching support fordatabase data on the execution time of the queries.7 SummaryAlthough cache-coherent shared-memory multiprocessors areoften used to run commercial workloads, we did not have muchinsight into how these workloads use the memory subsystem ofthese machines. In this paper, we have addressed this problemfor representative DSS queries running on a multiprocessoremulation of Postgres95. We have found that, from a memoryperformance point of view, queries di�er largely depending onwhether they access the database data via indices or by se-quentially scanning the tuples. The former queries, which wecall Index queries, su�er most of their shared-data misses onindices and lock-related metadata. The latter queries, whichwe call Sequential queries, su�er most of their shared-datamisses on the database tuples. We have found that both In-dex and Sequential queries can exploit spatial locality and,therefore, can bene�t from relatively long cache lines. Wehave also found that shared data has little temporal local-ity inside queries. Private data, however, has some temporallocality. In addition, there is temporal locality across Se-quential queries. Finally, we have found that the performanceof Sequential queries can be improved moderately with dataprefetching.Overall, this work is a �rst step towards understanding thememory performance of databases. The work remaining ishuge. It is necessary to address other issues, including morecomplex queries that involve nested queries, other types ofqueries that contain frequent writes, and intra-query paral-lelism.AcknowledgmentsWe thank Jolly Chen, Andrew Yu, and Paul Aoki for theirhelp with Postgres95. We thank the Transaction ProcessingPerformance Council for giving us the source code of TPC-D and dbgen. We also thank Sharad Mehrotra, the referees,and the graduate students in the I-ACOMA group for theirfeedback. Josep Torrellas is supported in part by an NSFYoung Investigator Award.
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