Authenticated Triples
CS 507, Topics in Cryptography: Secure Computation

David Heath
Fall 2025

Last time were working on the problem of instantiating our preprocessing functionality for malicious
MPC. Recall that our 2PC functionality performed three tasks:

e Initialization. Upon initialization, the functionality samples random A4, Ap €g {0,1}* and then
sends these to A (resp. B).

e Random bits. Upon receiving instructions from both parties, the functionality samples a bit o €g
{0,1}, samples an authenticated sharing {«}, and deals shares to the parties.

e Random triples. Upon receiving instructions from both parties, the functionality samples two bits
a, B €5 {0,1}, samples authenticated sharings {a, 8, - 8}, and deals shares to the parties.

(Formally, above the adversary gets to choose its randomness on behalf of the corrupted party.) Recall that
that in the two-party setting, we defined notation {x} to mean a secret sharing of the following form:

{x} = [x : (AA7A37 1)]

Last time, we instantiated a maliciously-secure variant of the IKNP OT extension protocol, which
achieved the following correlated OT functionality:

e On input 7 € {0,1}" from a receiver and A € {0,1}* from a sender, output [r @ A].

(Again, formally, the adversary gets to choose its randomness in the output secret shares on behalf of the
corrupted party.)

We also saw how by using two invocations of correlated OT, we can construct authenticated random
bits. Namely, we can invoke correlated OT once with A as the sender with key A4, and once with B as the
sender with key Ap. By doing so, we obtain numerous authenticated bits {a4}, {ap} where a4 is known
in the clear to A (resp. B). By summing two such bits, we can obtain a uniform authenticated bit known
to neither party:

{aa} ®{ap} ={a} where a = aq @ ap

In the following, it will be useful to keep around the two “halves” of {a}—mnamely, {aa}, {ap}.

Our goal today is to build on top of these authenticated random bits and ultimately obtain random
authenticated AND triples, completing our functionality. We will follow present a technique similar to that
of [KRRW18].

Ultimately, our goal is to construct random triples {a}, {8}, {a8}. Our presentation will proceed in two
steps:

e First, we will build leaky AND triples. These are authenticated triples, but we will allow the adversary
to learn one input of the triple with probability 1/2.

e Second, we will show how to combine AND triples to eliminate the adversary’s chance of winning.

Leaky AND Triples

Our first goal is to build a triple {a}, {8}, {aB}, but with the following caveat: The adversary is allowed
to guess a. If the adversary guesses correctly, then they learn that their guess is correct, and the protocol
proceeds silently without the honest party noticing. If the adversary guesses incorrectly, then the protocol
aborts. Notice that because « is uniform, the adversary can only guess correctly with probability 1/2. Notice
also that if we make a large number of triples, and if the adversary tries to guess on too many of them, the
protocol is all but certain to abort.

Of course, we do not ultimately want these leaky forms of triples; this concession is made to the adversary
only for the purposes of efficiency.

As a starting point, let’s generate two random authenticated bits {a, §}. Moreover, let’s recall that each
bit comes in two parts, one known to each party. Let’s keep these parts separate for wire . Namely, the
parties hold the following:

{aa} {as} {8}

Bit £ is uniform; Bit «; is known to party P;, and it is uniform if party P; is honest. The main idea is that
it suffices for parties to compute both {a 48} and {apf}, since the following holds:

{aaf} ®{appf} = {ab}

Let’s focus on the computation {a48}; {apS} is computed symmetrically. To achieve such an authenticated
value, we will use a garbled-circuit-like trick.

In particular, notice that there are only two possible values for « 4; B will, roughly, send to A two “garbled
truth table rows” that compute the appropriate function. It will indeed be the case that a malicious A can
garble each such row incorrectly, but if she does and B evaluates it, this will break B’s MAC key, and so
she will notice and abort. As we will see, if A corrupts a garbled row and B does not abort, then A will use
this to infer that B must not have decrypted the corrupted row, which leaks ag to A. This matches our
concession in security: A can learn ag—and hence a—with probability one half.

Recall that the authenticated share {ap} includes a component of form [apA 4]. If we think about what
this means in more detail, it means that A holds some share of form X € {0,1}*, and B holds a matching
share X @ apA 4. Or, in other words, B holds one of two possible “keys”:

X ifaB:0

X ®agAs =
B=A {X@AA otherwise

A will use these two keys to encrypt two “garbled rows”.

We can also think about {3} as composed of its shares. Namely, A holds some string Y € {0,1}?**! and
B holds the matching share Y @ 8(A4, Ap, 1).

Let us assume we have a random oracle H : {0,1}* — {0,1}>**1. A samples a random string Z €g
{0,1}?**! and sends to B the following two strings:

TOZH(X)@Z
rm=HX®AnpYa®Z

Now, B holds either X or X & A4, and he knows which of these two cases he is in, since he knows apg.

He acts conditionally, depending on . He computes:

ro ® H(X) ifap=0
rMOHX®AL) DY ®B(As,AB, 1)) ifap=1
JHX)e2z)e HX) if ap =0
N HEXeASYSZ)@HXGAL)® (Y ®B(As, AR, 1)) ifag=1
o Z ifaB:0
| Z®B(As,AB,1) ifag=1

=Z®apB(Aa,Ap,1)

Thus, A holds Z and B holds a matching share Z ® apB(A 4, Ap,1); If the parties behave honestly, they
hold {apf).

Why this is maliciously secure. Let’s argue security at an intuitive level.

First, suppose B is malicious. Here, security is quite straightforward: B holds key X & apA 4, and not
the flipped key X @ —apA4. He cannot guess this latter key, because guessing this would involve guessing
A 4. Thus, malicious B can only decrypt the single row as we intend. And, again, he cannot flip the output
sharing {ap 3} because he cannot guess A 4.

Now, suppose A is malicious. The intuition here is that A’s only available action is to send corrupted
rows 1, 1. But corrupting rows will not help A flip the value of the output wire sharing, because that would
involve guessing Apg. As we stated earlier, there is one avenue of attack for A: A can corrupt one of the
rows and see if this causes B to abort the protocol later on. If it does not abort, then that tells A the value
of ap. For instance, if r(is incorrectly constructed and B never aborts, then that must mean that ap = 1.

Corrupting such a row in this way amounts to simply guessing a g, which will succeed with probability
1/2. Crucially, if A guesses wrong, then the protocol aborts. Also crucially, only one of the AND triple’s
input bits can be leaked. Namely, while the adversary can learn «, they have no mechanism by which to
learn .

Thus, the parties can compute {ap 3}, and they can of course symmetrically compute {a45}. By XORing
these, we can obtain {«f8}. Again, if the triple is well-formed, then the adversary knows a with probability
at most 1/2.

Bucketing triples

Now that we can construct leaky triples, we are almost to our full desired functionality. The main idea will

be to combine multiple triples together. In particular we will show how to combine two AND triples to yield

a single one. The benefit of this is that while each input triple can be “corrupted” with probability at most

1/2, the output triple can be corrupted with probability at most 1/4. By repeating this, we can yield a single

triple with negligible probability of being corrupted. The following description is adjusted from [WRK17].
In particular, let us suppose we have preprocessed two triples:

{a’,8%,0"3%

{a', 8", a' '}
It is crucial to recall that while the adversary might know o, a', it does not know (°, 3. Parties first
compute the following locally:

{a} ={a’®@a'}
{8y ={8"@ 8"}
Our output triple will be the following;:

{a}. {8}, {aB"}

(Note that this might be different than your expectation that the triple would be {a}, {8}, {af}.) Notice
the following:
aBO — (O(O @al)lgo — O[O,BO @alﬁo

The parties already hold {a°3°}, so it suffices to compute {a!3°}. Notice the following:
(a8 ={' (B e 8} @ {a'') = {a' B} @ {a'B"}

Again, the parties already hold {a!3'}, so it suffices to compute {a!3}. But this is easy: the parties simply
reveal to themselves 3. This is secure because bit 8! is secret, random, and independent of 8°, so it acts as
a one-time pad. From here parties can simply compute {a'} - 8 = {a!B}. So summarizing:

e The parties compute two triples.
e They linearly combine the parts and open the 5 component.
e They then linearly combine the triples to obtain {«, 8%, a3°}.

Notice that the adversary gained no additional information about o, and learned nothing about °. Thus,
we can claim that the adversary knows « with probability at most 1/4. Repeating this A times yields a true
triple.

Decreasing the overhead of bucketing via batching

So far, we need to bucket £2()) triples to achieve suitable security for our triples. However, this is quite
expensive, since each triple itself requires ©()) bits to construct. Thus, we currently require Q(\?) bits of
communication per triple, which is quite expensive.

There is a simple observation we can leverage to do much better: typically, we want to preprocess a large
number of triples, not just one. So, before we bucket, we will need to preprocess large numbers of leaky
triples, not just A of them. Recall that for each leaky triple the adversary tries to corrupt, they are caught
with probability 1/2. So even if we create a huge batch of n > X leaky triples, the adversary cannot corrupt
more than A of them without being caught with overwhelming probability.

This leads to a very simple insight: before we bucket the triples, randomly shuffle them. Namely, after
all leaky triples are computed, the two parties agree on a public, randomly-chosen permutation. Then, we
bucket adjacent triples. The insight is that in order for the adversary to actually attack the protocol, they
must manage to completely fill a particular bucket with corrupted leaky triples. But their probability of
doing so successfully is now considerably worse.

Namely, if our goal is to construct n total multiplication triples, some basic combinatoric analysis shows
it now suffices to construct only ©(nA/logn) leaky triples, rather than ©(n\).

Next Time

We have now successfully achieved the preprocessing protocol for our maliciously-secure variant of GMW.
From here, we will learn how to achieve similar techniques in the constant round, garbled-circuit-based
setting. In particular, next time we will study authenticated garbling, which combines our existing prepro-
cessing protocol with garbled circuit techniques we have already seen. The result will be a constant-round,
maliciously-secure 2PC protocol.

References

[KRRW18] Jonathan Katz, Samuel Ranellucci, Mike Rosulek, and Xiao Wang. Optimizing authenticated
garbling for faster secure two-party computation. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 365-391. Springer, Cham, Au-
gust 2018.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and efficient mali-
ciously secure two-party computation. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 21-37. ACM Press, October / November 2017.

