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Last time, we discussed connections between maliciously-secure protocols and zero knowledge (ZK) proofs.
In particular, we examined the GMW compiler, which is a technique for converting semi-honest-secure
protocols into malicously-secure ones. Recall that the main idea was to insist that at each protocol step,
the sending party proves in zero knowledge that their message was constructed as specified by the protocol.
Thus, we can upgrade any semi-honest secure MPC protocol into a maliciously secure protocol.

Today we will explore quite a different connection between MPC and ZK proofs. In particular, we will see
how MPC protocols can be used to construct ZK proofs for arbitrary statements. The particular paradigm
we will study today is called MPC in the Head [IIKOS07]. This paradigm has been explored in many works,
and today we will study a particularly simple one called ZKBoo [GMO16]. There are a few reasons for
studying this paradigm:

e It demonstrates one way to construct ZK proofs for arbitrary statements. Note that ZK is an incredibly
active area of research, and what we will see today is just one piece of an enormous landscape of ideas.
Still...

e The paradigm is best-in-class for constructing proofs of particular statements. For instance, the
FAEST signature scheme (https://faest.info) is based on MPC in the Head [BBD"23|. This
signature scheme is a leading candidate for constructing signatures—a central primitive for secure
communication—that remain secure in the presence of an adversary with access to a powerful quan-
tum computer.

e The paradigm is a beautiful application of the techniques we have learned so far. It applies them in a
non-obvious way, and many of the artifacts that we discuss simply as a means by which to define/prove
security are used in a constructive way.

The protocol we will see today is constructible from a commitment scheme.

Zero Knowledge Proofs

Recall from last time that a ZK proof is an interaction between a prover P and a verifier V. The parties
agree on some statement z, and P would like to convince V' that the statement x is true (formally, = belongs
to some language £). To aid in this process, P has a witness w, which you can think of as P’s proof that x
is true. We would like to achieve three properties:

e Completeness. If x € £, then V outputs 1 at the end of the protocol (with high probability).
e Soundness. If z ¢ £, then not even a malicious P can cause V to output 1 with high probability.
e Zero Knowledge. Not even a malicious V can learn anything about P’s witness w.

Today, we will concern ourselves with a general-purpose notion of ZK proofs. In particular, suppose we
have some Boolean circuit C : {0,1}" — {0,1}; C will correspond to the proof statement. Namely, the
statement we will consider is the following;:


https://faest.info

There exists some input w € {0,1}" such that C(w) = 1.

Of course, if one knows such a witness w € {0,1}", it is easy to check that C'(w) = 1 by simply running
the circuit. This language (i.e., those circuits that are satisfiable) is general-purpose in the sense that any
bounded-time computation outputting 0 or 1 can be converted to such a circuit, so we can essentially arrange
that P can potentially prove to V' that any (bounded) claim is true. Today we will build a generic ZK proof
system for any such C.

Note that when we are constructing ZK proof techniques, we are typically concerned with three efficiency
properties:

e Proof size. How many bits are transmitted between P and V.
e Prover running time. How long does it take P to generate the information it sends to V7
e Verifier running time. How long does it take V' to check P’s proof?

Note that in many modern proof systems there can be huge discrepancies between these costs. In particular,
it is possible to construct proof systems where the verifier time and proof size are extremely low. Our focus
today will be on simply achieving all three metrics scaling linearly in the circuit size |C|, as well as some
small dependence on a security parameter.

High Level Sketch of MPC-in-the-Head

Recall, P holds a witness w and both P and V hold a circuit C. P would like to convince V that it knows
w such that C(w) = 1, while keeping w secret.

The main idea underlying MPC-in-the-head is this: P will emulate—in its head—the execution of a
semi-honest secure MPC protocol that securely computes C(w), writing down the view of each emulated
party. P then commits to the view of each emulated MPC protocol; each party view is committed separately.
Next, V challenges P to open a subset of the party views, and P opens them. V checks that the opened
emulated parties sent messages consistent with their views, i.e. that they indeed followed the protocol as
prescribed. If (1) all opened parties behaved honestly and (2) the output of the MPC protocol was indeed
a 1, then V accepts, and otherwise V rejects.

Why does this work? We can argue each ZK property in turn:

e Completeness: If C(z) = 1 and P simply behaves honestly, then the emulated MPC protocol will
indeed output 1, due to correctness of the underlying MPC scheme.

e Zero Knowledge: V learns nothing about w due to the security of the MPC protocol. Indeed, V'
does not open all party views.

e Soundness: If P wishes to cheat, the insight is that she must “corrupt” at least one of the emulated
MPC parties. Indeed, if all emulated parties behave honestly and C'(w) = 0, then V will not accept, so
cheating P must force some emulated party to behave dishonestly. But V opens party views randomly
and checks consistency. So if we are careful in our design, V will catch the cheating party with some
probability (scaling in the number emulated parties).

In a bit more detail, a cheating P must corrupt at least one communication channel between parties. Namely,
the protocol must instruct some party p; to send a message m to p;, yet p; instead sends some different
message m’ # m. If V opens both p; and p;, it will detect this discrepancy.

In more detalil...

Let’s assume that we have a p-party MPC protocol IT that is secure against any p— 1 semi-honest corruptions
(e.g. the GMW protocol). For such a II, the MPC-in-the-head paradigm proceeds as follows:



P secret shares its witness w into p shares wy, ..., w,—; and gives one share to each of the p emulated
parties.

P emulates execution of an MPC protocol II that securely computes C(wg + ... + wp—1) and records
the view of each party. P commits to each view ¢; = Commit(view;;r;) (r; is commitment randomness)
and sends each ¢; to V.

V randomly samples a size p — 1 subset of parties and sends their ids to P.

P opens all such commited views to V.

V' checks that communication between the opened parties is consistent with the protocol description.
If not V rejects. V also checks that each emulated party outputs 1. If so, V' accepts.

In a p-party protocol, there are p(p — 1) total communication channels, and V opens (p — 1)(p — 2) of those
channels. Again, to cheat it is necessary for cheating prover to corrupt at least one of these channels, so the
cheating prover will be caught with at least the following probability:
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Setting p = 3, we see that V' catches a cheating P with probability at least 1/3.

Soundness amplification. Of course, we might want much better soundness than this. For instance, we
might want to achieve a soundness error that is negligible in the security parameter. This can be achieved
by simply repeating the protocol many times. This is a standard trick in interactive proof systems.

Improving Efficiency

So far, the protocol we have described is incredibly inefficient. Indeed, if we recall how the GMW protocol
works, it involves pairwise utilization of Oblivious Transfer (OT). Therefore, if we plug GMW into the above
schematic as is, we implicitly make use non-black-box OT: the prover P must write down all messages
sent /received as part of the OT protocol. Note that this implies non-black-box usage of some cryptographic
primitive, e.g. DDH-friendly groups.

One crucial and elegant observation is that due to the structure of the above proof, we can replace
invocations of the OT protocol by its ideal functionality. Indeed, V already checks communication channels
between parties, so it can just as easily check that the ideal OT functionality is properly executed between
that pair of parties.

With this crucial optimization and setting p = 3, the total communication cost per repetition is only
O(|C| + A) bits. Essentially, the whole proof involves (1) transmitting commitments, and (2) transmitting
views of size O(|C|). Of course, achieving negligible soundness error requires repeating the protocol O(\)
times.

One major improvement of subsequent works in the area of MPC-in-the-head was to (1) decrease the
number of needed repetitions and (2) achieve sublinear scaling in the circuit size. See e.g. [BBDT23]. A
key technique for achieving this improvements is to change the underlying MPC protocol to something more
suited to the setting.

Non-interactive ZK Proofs (NIZKs)

So far, the scheme we have described is a so-called designated verifier proof. Namely, the prover and verifier
interact, and that interaction convinces only that verifier of the truth of the statement. If P wishes to
convince some other verifier, she will need to run the proof again.

In many cases, it might be desirable for P to prove the desired statement “once and for all”. Namely,
P would like to one time write down a proof m, then distribute 7 to verifiers, or even post 7 online. The



document 7 achieves all the desired guarantees of an interactive proof: each verifier learns the proved
statement must be true, while learning nothing about V’s witness. Such an object is called a non-interactive
zero-knowledge proof.

The MPC-in-the-head proof system sketched above can be used to achieve NIZKs in the random oracle
model, using the Fiat Shamir heuristic [FS87]. The key observation about our ZK protocol is that it is a
so-called public coin protocol. This means that the verifier V' has no private randomness. Indeed, V' does
have randomness (the choice of which parties it opens), but these choices are not “secret”. It is as if, once
P commits to party views, V' can flip its coins in plain view of the prover P.

Public-coin protocols can be made non-interactive in the random oracle model. The idea is simply this:
rather than having V flip random coins, we will have the random oracle flip the coins. This is the Fiat
Shamir heuristic.

In particular, our ZK protocol involves three rounds:

e Commit: P sends commitments of party views to V.
e Challenge: V sends back a public-coin random challenge.
e Response: P opens party views according to the challenge.

(Note, this style of three-round protocol is called a sigma protocol.) In the non-interactive version of the
protocol, P does not send its commitments to V' (indeed, there is no V'), but rather inputs the commitments
to the random oracle. The output of the RO is treated as the random challenge. P’s proof m is the
concatenation of the first-round commitments with the third-round openings.

To check the proof 7, any verifier can check that the third-round response is consistent with randomness
sampled from the RO. If so, the verifier performs the rest of the verification normally.

Thus, the MPC-in-the-head paradigm can yield simple, reasonably efficient proof systems, and they can
even achieve non-interactivity.

Next Time

We have now seen our first techniques for achieving maliciously-secure protocols, and we have introduced
the idea of emulating MPC players. From here, we will investigate more concretely-efficient techniques for
achieving malicious security.
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