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Last time, we introduced a definition for (standalone) malicious security of protocols. Recall that, as
with semi-honest security, this definition is based on a comparison between the real-world protocol and a
corresponding ideal-world protocol. This ideal-world protocol involves an ideal functionality or trusted party,
who locally computes the protocol’s desired input/output behavior.

The main difference between the semi-honest and malicious settings is that in the malicious setting we
assume the real-world adversary A is an arbitrary computation (often with the single restriction that .4
must run in polynomial time). Security of a protocol is shown by constructing an ideal-world adversary—a
simulator S—that participates in the ideal-world protocol and achieves the same “effect” as the real-world
adversary. We capture the notion of “effect” by examining the joint outputs of all parties in (1) the real
world and (2) the ideal world. If those two quantities are indistinguishable, we say our protocol is secure.

Namely, as cryptographers it is our task to show that for any real-world adversary A, such an ideal-world
adversary S exists. If we can show this, then it means that any “effect” caused by A can also be caused by
S in the ideal world. Thus, the space of “effects” that A can cause is no better than what an adversary could
achieve in the extremely limiting ideal world protocol. In other words, any such effect is, by definition, not
an attack.

Recall that, unfortunately, our natural ideal functionalities from the semi-honest setting are often too
strong for the malicious model. In particular, we had to settle for a weaker notions of security with abort,
where S can stop the protocol at will, capturing the natural ability of real-world A to simply stop responding.
Our ideal functionality with abort was as follows:

e Each party P; sends its input z; to the functionality (trusted party) F.
e F computes (yo,y1) = f(x0,1).

e Let party ¢ be the corrupted party. F' sends y; to the adversary.

e The adversary now has two choices:

— It can send continue to F'. In this case, F' sends y;_; to the honest party, and the honest party
outputs that quantity.

— It can send abort to F'. In this case, F' terminates, and the honest party outputs L.

We also discussed that while this weakening of functionalities is quite severe, functionalities with abort still
provide quite strong security guarantees.

Proof of the Coin Flip Protocol

Last time, we introduced a simple problem for which we would like to construct a maliciously-secure protocol:
flipping a shared coin between two parties. That is, (1) each party sends L to the functionality F, (2) the
functionality F' flips a coin x €g {0,1}, (3) F sends z to the adversary, (4) the adversary may abort the
protocol, and (5) if the protocol is not aborted, F' sends x to the honest party.



Our natural attempts at this failed, until we invoked a cryptographic commitment scheme (with compu-
tational hiding and perfect binding). Our protocol running between A and B proceeded as follows:

e A and B respectively uniformly sample bits a,b €g {0,1}.

e A generates a commitment ¢ = Commit(a,r) and sends ¢ to B.

e B sends b to A.

e A sends a,r to B, and B checks ¢ = Commit(a,r). If not, he aborts.
e Parties locally compute and output a & b.

We argued informally that this protocol is maliciously secure.

To get some practice with malicious security, let’s prove security formally; note that [Lin16] also provides
a rigorous proof of the security of this protocol. Recall that to prove security, we need to construct a
simulator for both parties, and we need to argue indistinguishability.

Simulator for B. Let’s start by simulating a malicious B. This means our task is to construct a sim-
ulator Sp that has the same “effect” as arbitrary program B, but where Sp interacts only with the ideal
functionality. Recall that our main tool for doing this is the fact that B is assumed to be a program, and
hence Sp can call B as a subroutine.

Let’s start trying to construct Sp. A natural first action is for Sp to simply send L to the functionality
F'. Note that, in the background, the honest party A also sends L to F'. Thus, F' now flips a coin = €g {0,1}
and gives x to our simulator Sg.

At this point, it may seem we are already almost done, but two crucial challenges remain:

e At this point in the ideal protocol, the simulator must decide whether protocol should abort or continue.
Because our simulation must “look like” the real-world protocol execution, we cannot just make this
decision arbitrarily. Instead, our decision must somehow be consistent with what the adversary B
actually does.

e Our simulator has to output something consistent with what B outputs in the real world. Since B is
an arbitrary program, we at this point have no idea what B will output.

Both challenges can be solved by the same main idea: let’s use the fact that B is just a program and have
our simulator invoke B as a subroutine. Our basic goal will be to try to “trick” B into thinking that it lives
in the real-world, when, in fact, it only lives in the simulator’s head. The idea for achieving this is that our
simulator will “act like honest A”. If we can do this convincingly (we can), it will lead to a proof.

So, we can start running a copy of B. It’s important to observe that there are really only two possible
things B can do at this point:

e B can exhibit some behavior that is obviously inconsistent with the real-world protocol. For instance,
B might halt immediately, or it might start sending nonsense messages. Indeed, if B does anything
other than simply await a message (remember, in the real-world protocol, B is suppose to wait for a
commitment from A), then we can treat that behavior as B’s desire to abort the protocol.

e B can wait for a message.

If B aborts, then Sp just sends ABORT to the functionality F' and outputs whatever B outputs. A bit of
reasoning shows that this is a good simulation. Indeed, in the real-world protocol, since B performs some
nonsense action, A would have aborted and output L. Similarly, in the simulation, honest A outputs L,
because it never is given output from F. At the same time, in both the real and ideal worlds, B outputs
some arbitrary value based on having received no information whatsoever from A. Thus, in this case,
the simulation is perfect. Indeed, in most cases, we will simply ignore such straightforward cases as the



adversary immediately aborting before any messages are exchanged, because, as we see above, they are
trivial to simulate.

We can now focus on the more interesting case where once we start B, it waits for a message. Notice
that if B were in the real world, it would be sent a commitment to some random bit by A. Well, it is easy
to arrange that B sees identically distributed information in the simulation. In particular, Sg (1) flips a
coin a €g {0,1}, (2) generates a random commitment ¢ = Commit(a;7), and (3) sends ¢ to B. Again, this is
tdentically distributed to what B sees in the real world.

Again, there are now two possibilities: (1) B can abort the protocol, or (2) B can send back a single bit
b, consistent with the real-world protocol specification. In the former case, we’ve already seen what to do:
the simulator will send ABORT to the functionality and output whatever B outputs. In the latter case, our
simulator has now seen three bits:

e It received the functionality output x from F.
e It sampled a bit a (“on behalf of the real-world honest party A”) itself.
e It received a bit b from B.

Recall that in the real world protocol, the output bit x is computed as a & b. Thus there are two scenarios
worth considering:

e We go “lucky” (more on this shortly), and it happens to be the case that a &b = x.
e We go unlucky: a © b # x.

In we lucky, we are essentially done. We can complete the simulated protocol as follows:
e Send CONTINUE to the functionality F'. This delivers x to the honest party A.

e Send the decommitment a,r to B. Notice that, again, this is exactly what B sees in the real world.
At this point, we can output whatever B outputs.

But what do we do if we are unlucky? A first attempt would be to simply try to complete the simulated
protocol anyway, as described above, but this would not work. The problem is while honest party A would
output x in this simulation, adversarial B sees a transcript consistent with output —x. Thus, there is
a distinguisher for certain adversaries B. Indeed, consider the adversarial B who happens to follow the
protocol as described and simply outputs a @b = —z. In the real world protocol, then, A and B both output
a @ b; In the ideal world protocol A outputs x and B outputs —x. These two worlds are distinguishable.

The lesson here is that it is typically important to run a simulated protocol to its completion such that
the simulated protocol output is consistent with the functionality output. So how shall we proceed?

The idea here is, again, to remember that B is just a program that we can run as a subroutine, so we can
run B again. In the literature, this is sometimes referred to as rewinding B. We “rewind” B to the moment
just before we send it a commitment. In particular, if we are unlucky, we can simply (1) spin up another
copy of B, (2) sample a fresh bit a €g {0,1} and send a commitment to B, and (3) receive a bit b from the
new copy of B.

Exercise 1. Farlier we already sampled a €g {0,1}. In this second attempt, can we simply commit to —a,
rather than freshly sampling a? Why/why not?

This second attempt can, again, be lucky or unlucky; if we are lucky, we complete the simulated protocol,
as already described. Otherwise, we can try again, and so on.

A remaining question is this: can we continue to be unlucky forever? A naive first “proof” would be to
claim that on each iteration, we are lucky with probability 1/2, so observing an “unlucky streak” of length
n occurs with probability at most 27", which is negligible. While this intuition is close to the truth, it is not
quite precise. The problem is that we have not accounted for B here! Perhaps B is always able to “evade” a
lucky outcome. Namely, by looking at the commitment we send it, B deviously sends back a bit b that, e.g.,



causes a @ b = 0. Here, it is important that the bit x is fized over all of our attempts. We cannot re-run the
ideal functionality!

But how could B be choosing its bit b this way? A bit of reasoning shows that in order to do this, B
must be breaking the hiding property of our commitment scheme. Indeed, the algorithm B would be able
to be used to break commitment scheme hiding, which contradicts the assumption that Commit is, in fact,
hiding. Therefore, our intuition is correct: it is only negligibly likely (in n) to observe a streak of n unlucky
runs.

There is only one more subtle detail remaining: Our definition of malicious security requires our simulator
to run polynomial time in all cases. Thus, although it is unlikely run for a long time, we must explain why
our simulator does not run forever. The trick here is simply to set an upper bound on the number of runs,
say A. After a streak of A\ unlucky runs, the simulator simply gives up. Namely, it sends ABORT to the
functionality and outputs an arbitrary value, say FAILED. While the real-world B might not output FAILED,
this case occurs with negligible probability.

Simulator for A. Next, let’s construct a simulator S4 for A. Again, we will proceed, roughly, by “tricking”
A into thinking it is in the real world protocol.
We start the simulation as follows:

e S, will first send L to the functionality F' and receive a bit x.
e S, spins up a copy of A; recall the first (non-trivial abort) action by A is to send a commitment c.

Now, from here B is expected to send a bit to A, so our simulator should do the same. But which bit
shall we send? The main idea is this: Let’s send both possible bits!

In particular, we’ll make a copy of B (with the same input randomness, so it will send the same com-
mitment c). Let’s call one copy By and the other B;. We'll send 0 to By and 1 to B;. From here, By (resp.
Bj) has two options: abort the protocol, or decommit to a valid opening. There are three possibilities:

e Both By and B; decommit. Note that they must both decommit to the same bit b, as otherwise B
must be breaking the binding property. Now, we have two running protocol simulations, and one of
them must be consistent with the functionality output z. In particular, Sg (1) sends CONTINUE to F,
(2) computes a = = @ b, and (3) outputs whatever B, outputs.

e Both By and B; abort. In this case, Sp aborts as well and outputs whatever By outputs.

e One copy of B aborts, and the other decommits. Here, we perform a case analysis. Suppose the
decommiting version of B; decommits to bit b. We conditionally proceed, depending on the quantity
1D

— If it happens to be that @b = x, then we send CONTINUE to the functionality and output whatever
B; outputs.

— Otherwise, i.e. i ® b # x, then we send ABORT to the functionality and output whatever Bi_;
outputs.

It is not hard to see that this simulation is identically distributed to the real world. Indeed, this is roughly
by construction.

Exercise 2. Ensure you understand why party outputs from the above simulation are indistinguishable from
their real world counterparts.

Zero Knowledge Proofs; the GMW Compiler

Now that we understand the definition of malicious security, how can we actually achieve maliciously secure
protocols for less contrived protocols? We'll start by understanding that every semi-honest protocol can be



upgraded with malicious security by means of a cryptographic compiler. In particular, we’ll use the famous
GMW compiler [GMW8T], which is based on so-called Zero Knowledge Proofs.

A Zero Knowledge Proof is a protocol involving two parties—a prover P, and a verifier V. Both parties
have in mind some mathematical statement x, and P would like to convince V' that the statement x is true.
Formally, we typically think of x as a string, and we consider some language L. P would convince V that x
is in the language £, x € L. To help P with this task, P has some extra information, called its witness w.
Somehow w makes it clear that x € L. However, P would like to keep w secret.

In particular, a ZKP protocol 1I should provide three properties:

e Completeness. If x € £, then V outputs 1 at the end of the protocol (with high probability).
e Soundness. If 2 ¢ £, then not even a malicious P can cause V to output 1 with high probability.
e Zero Knowledge. Not even a malicious V' can learn anything about P’s witness w.

In fact, (a slight strengthening of) these properties can be formalized as a special case of malicious
security. In particular, consider a functionality where:

e P has input w and V has input L. Parties send their inputs to the functionality.
e The functionality checks if w is a valid witness. If so, it sends 1 to V, else it sends 0.
Now, malicious security in the context of this functionality implies (strengthenings of) the ZK properties:

e Completeness: The ideal functionality insists V' gets 1 if the witness is valid. Thus, the real-world
protocol must cause V' to output 1 with overwhelming probability.

e (Knowledge) Soundness: A simulator for P must “extract” from P its witness w in order to send
it to the functionality. Because behavior is idealized, the simulator has no way to “trick” the honest
party, and so neither does the real-world adversarial prover, except with negligible probability.

e Zero Knowledge: The fact that V' “learns nothing” about w is directly implied by V’s simulator.

The community knows many protocols for achieving Zero Knowledge proofs for any language in the
complexity class NP. Roughly, this means that it’s effectively possible to “prove anything” in ZK. Indeed,
we will see an MPC-based ZK protocol next time.

Now, supposing we have such a protocol, there is a relatively straightforward idea for upgrading a semi-
honest protocol to a malicious one:

Run the semi-honest protocol, with the following modification. Whenever a party sends a message
m, they prove in Zero Knowledge to the recipient that m was constructed according to the rules
of the semi-honest protocol. If such a proof fails, the recipient aborts.

In particular, as a first attempt, the sender can prove “this message m was constructed according to the
semi-honest protocol, given that my input is £ my randomness is r, and the messages I have received so far
are 7.” Namely, the sender proves his message is consistent with his view. As described, there is one serious
problem with this proof: the statement depends on the prover’s input x (which is supposed to be secret)
and the prover’s private randomness. Fixing this is relatively straightforward: Each party commits to their
respective inputs, and the proof is with respect to the commitment (which is hiding), not the input itself.
One final detail is that the sender might choose it’s randomness maliciously. This can be fixed by using the
above coin flipping protocol to sample randomness, and then forcing the sender to prove its random bits
were chosen according to the output of the coin flipping protocol.

This indeed can be shown to work, in the sense that any protocol can be proved maliciously secure.
Thus, we now have an important feasibility result: Any semi-honest protocol can be upgraded to a malicious
protocol. Unfortunately, this GMW compiler can be quite expensive, since if the semi-honest protocol II
involves use of any cryptographic primitives, then the compiled protocol requires proving correct execution
of that primitive, a non-black-box use of cryptography. Still, this feasibility gives evidence that we can be
hopeful that efficient malicious protocols can exist.



Next Time

We will continue our discussion of Zero Knowledge proofs, and in particular show connections between our
MPC protocols and ZK. We will specifically show how to construct a ZK proof scheme from an MPC scheme.
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