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So far in this course, we have investigated protocols in the semi-honest model. In this model, we design
protocols, and we assume that adversarial parties are semi-honest or passive: they follow the instructions
of our protocols precisely as specified. While this is convenient for designing simple protocols, it is not
necessarily realistic.

In more realistic scenarios, we can envision that an adversary might deviate from our protocol arbitrar-
ily. That is, rather than running our protocol, the adversary will run some piece of code of their choice.
Intuitively, we expect that a particularly cunning adversary will design their code carefully with details of
our protocol in mind, in order to obtain a maximal advantage. For instance, the adversary might hope to
learn as much as possible about honest party inputs. We refer to such entities as malicious adversaries or
sometimes active adversaries.

Ideally, we would like to design our protocols such that they resist any attempt to cheat by a malicious
adversary. If we can achieve this, our protocol has malicious security.

Informally, and perhaps obviously, achieving malicious security is significantly harder than achieving semi-
honest security. The reason for this should be intuitive: in the semi-honest model, we need only provide
security against a single, known piece of adversarial code (their part of the protocol as we specified it); In
the malicious model, we need to provide security against all possible pieces of code (that run in polynomial
time).

Amazingly, and as we will see in subsequent lectures, many of the techniques we have already seen can
be upgraded to the malicious setting with (somewhat) small adjustments. Indeed, this “upgradability” is
one of the reasons semi-honest security remains a definition worthy of study. Going forward, we will see two
mechanisms by which to upgrade protocols:

• Protocol compilers: There exist some generic mechanisms by which to upgrade a semi-honest protocol
to a malicious one automatically. These mechanisms, called compilers, take as input a semi-honest
protocol and output a malicious one. Note that the compilation process can significantly degrade
performance of the semi-honest protocol.

• Non-black-box upgrades: When one wishes for higher performance, often the more sensible approach is
not to compile a malicious protocol, but rather to build a fresh protocol with malicious security. Still,
from experience we have learned that such protocols are often easier to achieve by using a corresponding
semi-honest secure protocol as a template.

Going forward, we will discuss several techniques for achieving malicious security. However, our main
goal today is simply to understand what malicious security means, in a formal sense.

The Real/Ideal Paradigm, Revisited

Recall that our notion of semi-honest security is defined by comparing the adversary’s view in the real-world
protocol to its view in an ideal-world protocol involving a trusted third party (a functionality). These two
worlds are compared by constructing a simulator that reorganizes the ideal-world view to make it “look
like” the real-world view. A proof of security involves showing the output of the simulator is, indeed,
indistinguishable from the real-world view.
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Malicious security is defined in the same manner. Indeed, the definition is a simple (yet quite hard to
understand, initially) modification of semi-honest security.

For simplicity, let’s consider the two-party case; we’ll look at a definition adjusted from [Lin16].

Definition 1 (Two-Party Malicious Security). Let f be a two-party functionality and Π be a two-party
protocol that computes f . Π securely computes f in the presence of a static malicious adversary if
for every (non-uniform, probabilistic polynomial time) adversary A, there exists a (non-uniform, probabilistic
polynomial time) adversary S (a simulator) such that the following indistinguishability (in security parameter
λ) holds for all i ∈ {0, 1}:

{Ideal(λ, i, x1−i, f,S)}
c
= Real(λ, i, x1−i,Π,A)

Here, i denotes which party is corrupted (P0 or P1), and x1−i denotes the other (honest) party’s input.
Ideal(λ, i, xi, f,S) denotes the outputs of both parties in the ideal protocol when party i is corrupted (i.e.,
replaced by S), and Real(λ, i, xi,Π,A) denotes the outputs of both parties in the real protocol when party i
is corrupted (i.e., replaced by A). Randomness in the ensembles is over the random coins sampled by the
parties.

This definition requires some significant explanation.
Let’s think about it by analogy to the semi-honest model. In the semi-honest model, we compare what

the real-world adversary learns to what can be learned in the ideal world. If a simulator exists, then that is
proof that the information in the real world is “no better” than the information in the ideal world; indeed,
the ideal-world information looks the same. That must mean that the real-world adversary learns nothing
in the real world, beyond what it learns in the ideal world, which is precisely what we specify the adversary
is allowed to learn.

The malicious model is analogous. In the real world, the adversary A may attempt various forms of
attacks. We compare the space of possible attacks to what attacks can be performed in the ideal world.
To show security, we (the cryptographers proving security) construct a new ideal-world adversary—the
simulator. This simulator can perform “attacks” in the ideal world. However, note crucially that the space
of attacks in the ideal world are extremely limited, since the ideal-world adversary only gets to interact with
the ideal functionality. If a simulator exists, and indistinguishability holds, then that is proof that attacks
the adversary attempts in the real world are “no better” than attacks that can be attempted in the ideal
world. Indeed, the adversary’s output and the effect on the honest party (its output) are indistinguishable
across the two worlds. That must mean that the real-world adversary can perform no attacks in the real
world, beyond those it can launch in the ideal world, which is precisely what we specify the adversary is
allowed to do.

Remark 1 (Static security). Roughly, the above definition states that the adversary chooses which party to
corrupt when the protocol starts. There exist much stronger of notions called adaptive security, whereby the
adversary can corrupt parties as the protocol proceeds, perhaps even ultimately corrupting all parties. Such
notions can be much, much harder to realize. We will not focus on them in this course.

Ideal Functionalities with Abort

Recall that when we defined semi-honest security, we did so by giving a simple, specific ideal MPC function-
ality:

• Each party Pi sends its input xi to the functionality (trusted third party) F .

• F computes (y0, ..., yp−1) = f(x0, ..., xp−1) and sends yi to Pi.

Can we use this same ideal functionality the malicious setting? Unfortunately, the answer is often no.
The reason is that this functionality is remarkably strong; it essentially states that the adversary has no
attack capabilities whatsoever, beyond choosing its input.
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Unfortunately, in many scenarios there is a simple attack that we cannot possibly hope to mitigate: the
adversary “switches off its machine”. Consider this: suppose that the real-world protocol Π is such that the
adversary learns the protocol output just before an honest party would. A bit of reasoning shows that some
event like can necessarily occur. Since messages are sent one at a time, some party must get output first,
and we may as well assume the adversary is that party. Now suppose that as soon as that adversary learns
its output, it turns off its machine, stopping the protocol. This necessarily leads to a certain kind of attack
where the adversary learns the protocol output, but the honest party does not. The protocol is inherently
unfair.

Remark 2. The above discussion of fairness is a significant simplification of the adverary’s capability in an
arbitrary protocol. It is the case that the adversary can, in general, learn more than the honest party, but
there are some (very limited) techniques for bounding this advantage. See [Cle86] for a careful proof of the
inherent difficulty of fairness.

Thus while we might like our simple functionality, it is often too strong. Our simple functionality requires
that the protocol achieve so-called guaranteed output delivery (GOD). GOD can only be achieved in certain
scenarios. For instance, generic MPC protocols can only achieve GOD when we assume a majority of the
parties are honest (i.e., not corrupted by A).

In general and in the setting where a majority of parties might be dishonest, we will need to resort to
weaker notions of security. In particular, we will now introduce a change to the 2PC ideal functionality that
we refer to as security with abort :

• Each party Pi sends its input xi to the functionality (trusted third party) F .

• F computes (y0, y1) = f(x0, x1).

• Let party i be the corrupted party. F sends yi to the adversary.

• The adversary now has two choices:

– It can send continue to F . In this case, F sends y1−i to the honest party, and the honest party
outputs that quantity.

– It can send abort to F . In this case, F terminates, and the honest party outputs ⊥.

This change to the functionality probably seems a significant weakening of protocol guarantees, and indeed
it is. Unfortunately, in many cases, the above functionality is essentially the best we can hope for, due to the
fundamental ability of the adversary to simply stop participating in the protocol.

And, while our new ideal world is significantly weaker, it still provides many guarantees. For instance:

• The adversary cannot learn anything about the honest party’s input, except by carefully choosing its
own input and inferring what it can from the output of f .

• The adversary cannot cause the honest party to output anything inconsistent with an output of f ;
again, all it can do is carefully choose its own input.

• The adversary cannot choose its input depending on the honest party’s input. Indeed, the ideal-world
adversary must send its input to the functionality before it sees any messages.

Thus, while this ideal-world is a weakening as compared to GOD security, it is still quite strong.

Intuition of How to Prove Malicious Security

In our new security model, we are now tasked with producing an ideal-world adversary (a simulator) that
“does whatever the real-world advesary does”. How can we achieve such a notion?

The key idea is that our simulator’s design can depend on the behavior of the real-world adversary A. In
particular, A is simply a piece of code, and as cryptographers we can design our simulator S in such a way
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that it calls A. When a protocol Π is indeed secure, we can interact with A, and thereby extract insight
into the “attack” A is attempting.

Roughly, such simulations end up involving S “tricking” A into thinking it is participating in the real-
world protocol, when it is in fact not. Additionally, such simulations sometimes involve running A multiple
times; it is fine to do this, as A is just a piece of code. Ultimately, if S can figure out A’s intentions (e.g., its
input to the protocol, whether or not it intends to abort), then S can properly participate in the ideal-world
protocol.

An Insecure Protocol

To understand how malicious security works, it can be instructive to see examples of protocols that are
not maliciously secure. Let us attempt a particularly simple functionality: The parties output a common
uniform bit b. As a first attempt, let’s try our simple semi-honest XOR protocol

• A and B respectively uniformly sample bits x, y ∈$ {0, 1}.

• A sends x to B.

• B sends y to A.

• A and B each locally compute and output x⊕ y.

This protocol is semi-honest secure, but it is does not achieve malicious security.
The way to see the problem is to consider what happens when B is corrupted. Notice that B is allowed

to see x before it has to choose what y is. Thus, for instance, an adversarial B can always set the output to
be 0, by simply echoing x back to A.

Notice that this behavior is not possible in the ideal world. In the ideal world, we force parties to choose
inputs independently. Thus, in this protocol the real-world adversary can do something the corresponding
ideal-world adversary cannot. The protocol is not secure.

We can make an attempt to fix the protocol by having A encrypt its first message:

• A and B respectively uniformly sample bits x, y ∈$ {0, 1}.

• A samples a random bit r ∈$ {0, 1} and sends c = (x⊕ r) to B.

• B sends y to A.

• A sends r to B.

• Parties locally compute and output x⊕ y.

It might seem that this helps, because now B must choose y before it learns x; indeed, r acts as a one-time
pad, so from B’s perspective, x can be anything at the time it must choose y. Unfortunately, the protocol is
still insecure, because we can now consider what happens when A is corrupted. Indeed, we can reason that
A can choose x at will, after it learns y. To do so, it just sends a random ciphertext c in the first round, and
in the third round sends a bit that decrypts c to its chosen x.

However, this attempted fix gives a sense of what is needed. We want A to encrypt its message in such a
way that A cannot “change” what was encrypted later on. A primitive that achieves such a notion is called
a commitment scheme.

Commitment Schemes

A commitment scheme is the digital analog of a secure lock box. Intuitively, A can place a message into the
lock box, use a key to lock it, then give the box to B. B cannot see what is inside the box; is it hiding.
Later, A can give the key to B. Now, B can see the contents of the box, and he can be certain that those
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contents did not “magically change” between the time Alice gave him the box and the time she gave him
the key; the box is binding.

Formally, a commitment scheme is an algorithm Commit that takes as input (1) a message m and (2)
randomness r. To commit, A (1) samples randomness r, (2) calls c = Commit(m, r), and (3) sends c to B. To
later open, A simply sends m, r to B, and he checks Commit(m, r) = c. If not, he can be certain A aborted.
We will formally need a commitment scheme with computational hiding and perfect binding.

Definition 2 (Binding). A commitment scheme has binding is defined in terms of inputs m0,m1 and an
adversary A. Consider the following interaction:

• The adversary publishes a commitment c.

• The adversary is sent a bit b ∈ {0, 1}.

• The adversary attempts to open the commitment to mb. In particular, it sends randomness r. The
adversary wins if Commit(r,mb) = c.

The scheme is binding if no such A can win with probability greater than 1/2
+ negl(λ). A scheme is statistically

binding if security holds against even computationally unbounded adversaries, and it is perfectly binding if
the adversary wins with probability exactly 1

2 .

Definition 3 (Hiding). A commitment scheme has computational hiding that for all inputs m0,m1, the
following are indistinguishable:

{ Commit(m0, r) where r ∈$ R } c
= { Commit(m1, r) where r ∈$ R }

Here, R denotes the space of randomness for the scheme. Statistical hiding and perfect hiding are defined
in the natural manner.

Exercise 1. There is a simple commitment scheme from any pseudorandom generator that achieves sta-
tistical binding and perfect hiding. Read about this scheme (see https: // crypto. stanford. edu/ ~ dabo/

cryptobook/ BonehShoup_ 0_ 4. pdf , chapter 3.12) and prove it secure.

A secure protocol

Now, with our commitment scheme, we can build a maliciously-secure protocol:

• A and B respectively uniformly sample bits x, y ∈$ {0, 1}.

• A generates a commitment c = Commit(x, r) and sends c to B.

• B sends y to A.

• A sends x, r to B, and B checks c = Commit(x, r). If not, he aborts.

• Parties locally compute and output x⊕ y.

Remark 3. Since a malicious adversary can do anything, there are many opportunities for adversaries to
perform nonsensical actions. For example, in our above protocol, the adversary might send a string that is
clearly not a commitment. For example, the string is too short or too long. We treat these degenerate signals
as an abort. I.e., we model it by having the adversary send abort, and the honest party obliges.

Intuitively, the protocol is now secure: B can no longer cheat, because he must choose y after having
seen only a hiding commitment to x. Breaking independence of inputs would require him to break security
of the commitment scheme. And A can no longer cheat, because she can only open her commitment to x;
successfully opening something else would require breaking the binding property of our scheme.
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Next Time

We will proceed to show this protocol is secure by constructing simulators and arguing security. Then, we
will move on to discussing more advanced malicious protocols. In particular, we will begin discussing Zero
Knowledge proofs, and how they can be used to upgrade any semi-honest secure protocol to the malicious
model.
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