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At this point, we have seen two main techniques for achieving MPC of arbitrary programs, one based
on secret sharing (the GMW protocol), and one based on garbled circuits. Last time we even saw how to
generalize garbled circuits to work for any number of parties (the BMR protocol).

In all of the protocols we have seen, a main ingredient has been the eztensive use of Oblivious Trans-
fer (OT). Indeed, the GMW and BMR protocols both need O(p? - |C|) OTs, so even relatively modest
computations with a small number of parties can easily consume thousands or even millions of OTs.

Remark 1 (2PC garbled circuits use fewer OTs). The two-party garbled circuit technique still requires OT,
but it uses significantly less. In particular, for that protocol, we needed only O(n) OTs, where n is the size of
the evaluator’s input to the desired computation. Indeed, we do not even need OTs for the garbler’s input.
That is, the number of required OTs does not scale with the total circuit size; this fact will be important for
today’s discussion.

As we have discussed, OT can be constructed from certain public-key encryption schemes. Recall that
semi-honest 1-out-of-2 OT can be constructed as follows:

e The receiver samples two public keys pk, and pk;_,, where b € bit is the receiver’s choice bit. Public
key pk, is sampled in such a way that the receiver also holds a matching key sk, but pk;_, is simply
chosen at random, without a matching secret key.

e The receiver sends public keys pk,, pk; to the sender, in that order.
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e The sender encrypts its two messages m®, m! with the public keys and sends back two ciphertexts

co = Enc(pky, m°) and ¢; = Enc(pk,, m?).

e Since the receiver has only one matching secret key skg, she can only decrypt message m®, and not
1—s
m-=S.

Of course, this protocol requires calling public-key procedures Enc and Dec, and it requires transmission of
public keys. As described so far in this course, the parties invoke the above protocol O(p? - |C|) total times
to complete the BMR/GMW protocol.

The problem with this is that public-key encryption schemes are quite expensive. As one example of this
expense, the nearly-ubiquitous RSA encryption scheme has public keys that are thousands of bits long. This
means that the techniques we have discussed so far are essentially impractical. However, if we could greatly
improve the cost of OT, these techniques would become vastly more efficient.

Symmetric-key encryption schemes are generally very significantly more efficient than their public-key
counterparts. This should not be surprising, as the problem solved by symmetric-key schemes is strictly easier
than that of public-key schemes. Therefore, we can get away with less powerful cryptographic mechanisms.
Indeed, it is often fair to assume that a symmetric-key encryption scheme is orders of magnitude more
efficient than a public-key encryption scheme. As an example, the ubiquitous AES scheme often has keys of
length 128 bits, dozens of times shorter than RSA keys.

Therefore, there is a clear route to pursue: implement OT with a symmetric-key encryption scheme,
rather than a public-key one. Unfortunately, we have very strong evidence that this is impossible [TR90].
Namely, we believe that OT cannot be achieved with symmetric-key cryptography alone.



However, there is a way to circumvent this difficulty: we have strong evidence that public-key cryptogra-
phy is necessary to achieve OT, but this says nothing about how much public key cryptography is required.
In particular, suppose we wish to prepare a huge number of OTs n; so far, our techniques require O(n)
public-key operations. Perhaps we can use far fewer, say O(\).

Today we will see that this is indeed possible. We will investigate the OT extension technique. In
short, OT extension extends a small batch of O(A) OTs into a much larger batch of O(n) OTs. While we
need public-key operations to prepare the so-called base OTs, the larger batch can be prepared using only
symmetric-key operations.

An Analogy to Hybrid Encryption

The OT extension technique is analogous to an extremely common technique in secure communication.
When Alice and Bob wish to securely communicate on the internet, they can initiate their conversation
by using public-key encryption techniques. However, typically they do not send their actual messages with
public-key encryption. Again, public-key encryption is expensive, and we would like to avoid it.

Instead, Alice and Bob typically would use public-key encryption to exchange only a single, small message:
a symmetric encryption key. From here, they can use this symmetric key to far more efficiently encrypt their
messages. This technique is typically called hybrid encryption.

OT extension leverages the same main idea: the parties use a bare minimum number of public-key
operations to exchange key material, then they use symmetric-key techniques to exchange their desired
messages.

Random OT

Recall from when we originally defined OT that there are many OT variants. Formally, today we will consider
both the standard, chosen-message OT, as well as random OT. We will define the random OT functionality
as follows:

e The sender and receiver agree on a message length ¢.
e The functionality uniformly samples two messages m®, m' €g {0,1}¢ and a choice bit b €¢ {0,1}.
e The functionality sends m®, m! to the sender, and it sends b, m® to the receiver.
This is the functionality we will implement. Note that random OT can be easily transformed into chosen-

message OT.

OT Length Extension

Our goal is to transform a small number of OTs into a large number of OTs. However, to do this efficiently,
we will eventually need a much simpler transformation that converts a single random OT of relatively small
messages into a single random OT of much larger messages.

This is notion of OT length extension is achieved in a straightforward manner: the parties use OT to
exchange pseudorandom generator seeds, then they locally expand those to obtain the random messages.

e The sender and receiver invoke the random OT functionality with length A\. The sender therefore
obtain PRG seeds kg, k1; the receiver obtains b and k.

e The sender sets m® <— G(ko) and m! < G(k;). The receiver sets m® < G(ks).

This approach is clearly correct, and it is secure by the PRG: Since she does not know k1_g, to an adversarial
receiver the message m!'~* looks random.



Beaver’s OT Extension

Beaver was the first to demonstrate an OT extension construction[Bea96]. His is a feasibility result, but it
is quite inefficient, since it is non-black-box.
The idea is a relatively simple application of garbled circuits:

e The receiver chooses a short PRG seed k € {0,1}*. She defines her n choice bits as s <+ G(k).

e From here, the sender prepares a garbled circuit, into which he will feed his 2n messages and the
receiver will feed her seed k. The garbled circuit will then (1) expand s <— G(k), then for each pair of
messages m?, m} and choice bit s; it will compute m;* and output the result.

e The parties use this garbled circuit to run the standard semi-honest garbled circuit 2PC protocol.
Note that only A OTs are required. This is because the evaluator’s (i.e., the receiver’s) input is
a length-A\ PRG seed.

The approach is clearly correct and secure, due to security of G and the 2PC protocol.
Unfortunately, while it establishes an important feasibility result, this approach is highly expensive, due
to its non-black-box use of the PRG G (the garbled circuit includes a call to G).

IKNP OT Extension

One of the most significant developments in MPC was the discovery of the IKNP OT extension tech-
nique [IKNPO03]. This technique achieves OT extension from black-box cryptography, and it was transfor-
mative to the efficiency of our techniques.

To understand this technique, we will work in the random oracle model.

Definition 1 (Random oracle model). In the random oracle model, we assume all parties have access to a
hash function H : {0,1}* — {0,1}*. We model the behavior of H as a trusted third party that implemented
a truly random function.

It’s worth briefly stating that random oracles (ROs) are objects of some contention. Indeed, we know
that random oracles are uninstantiable [CGH9S8]. Still, RO is an incredibly useful heuristic for designing new
cryptography [BR93], and in this course we will often use it unapologetically.

Now, let us return to the problem of designing OT extension. The main idea of IKNP is to let the receiver
choose a random choice string s € {0,1}" and to let the sender choose a random correlation A € {0,1}*.
Note that A is very short in comparison to the number of OTs n. Now, we wish to allow the parties to
somehow compute XOR secret shares of the n x A matrix [s ® A].

Note that the matrix s ® A has the following form:

SO'AO SO'Al SO'AA—l
Sl'AO Sl‘Al Sl'A)\,l
Sp—1-Dg Sp1-A1 ... s Axg

There are two basic observations worth observing about this matrix:
e Each i-th row of the matrix is equal to A scaled by the bit s;.
e Bach j-th column of the matrix is equal to s scaled by the bit A;.

Now, recall that our goal is to construct secret shares of this matrix. Suppose we achieve this task; we
will see how shortly. Now, consider the i-th row, and let us suppose the sender’s share of that row happens
to be R; € {0,1}*. Since that row is s; - A, we know that there are only two possibilities:



e s; is equal to zero. In this case, the row is equal to zero, so the two parties must hold equal shares.
Namely, the receiver holds R;.

e s; is equal to one. In this case, the row is equal to A, so the party shares must differ by exactly A.
Namely, the receiver holds R; ® A.

This is essentially OT. There are two possible message R; and R; & A. The sender indeed knows them both,
since he holds R; and A, and the receiver holds exactly one of them, according to her bit s;.

Of course, this applies for every row of the matriz. Thus, the parties indeed hold n random OT-style
correlations. The only problem is that this all rows of the matrix involve the same difference A. This is
where we invoke the random oracle. In particular, for each row ¢, the parties set their outputs as follows:

e The sender sets m® = H(i, R;) and m' = H(i, R; ® A).
e The receiver sets m® = H(i, R; ® s; - A).

This use of the random oracle breaks correlations between the rows. Intuitively, the approach is secure, since
the receiver cannot obtain any message m! % except by guessing A. Since A is A bits long, this is infeasible.

Thus, if the parties can arrange that they hold secret shares of the matrix [s ® A], then they can indeed
generate n random OTs.

To compute this matrix, the parties will use A public-key-based OTs on the columns of the matrix. The
main surprise here is that the parties will swap roles to construct the matrix. Namely, to construct the
matrix, our OT receiver will play the role of base OT sender; our OT sender will play the base OT receiver.
This makes sense: For each column j of the matrix, there are two possibilities:

e A; is equal to zero. In this case, the parties should obtain secret shares of zero.
e A; is equal to one. In this case, the parties should obtain secret shares of s.

Thus, for each column of the matrix, the OT receiver (base OT sender) first samples a random string
r €g {0,1}", and she prepares to base OT messages: m® = r and m! = r @ s. She sets her share of the j-th
column as r. The OT sender (base OT receiver) sets his choice bit to A;, and sets his share as his base OT
output. If A; is equal to zero, his share indeed matches the receiver’s, so they hold secret shares of zero;
otherwise, his share differs from the receiver’s by s, so they hold secret shares of r.

By performing this step on every column of the matrix, the parties indeed obtain [s® A] which, as already
described, they can transform into n OT correlations. To restate, the full IKNP protocol is as follows:

e The receiver samples a random choice string s €g {0, 1}"; the sender samples a correlation A €¢ {0, 1}*.
e The parties swap roles and use A base OTs to obtain secret shares of the columns of the matrix s ® A.
e The parties then hash their shares of each row of the matrix.

The result is n OT correlations. Notice that this only requires O(X) public-key operations.

Next Time

We now have a large suite of MPC tools, and we have even substantially improved efficiency. However, all of
our techniques so far assume that the adversary follows the protocol as we describe it. What if the adversary
tries to cheat? Next time, we will begin studying maliciously secure protocols, which are resilient against
attempts to cheat. In particular, we will first examine zero knowledge proofs, and show connections between
semi-honest and malicious protocols.
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