Oblivious Transfer Continued; Randomized Functionalities
CS 507, Topics in Cryptography: Secure Computation

David Heath
Fall 2025

Last time, we introduced the 1-out-of-2 oblivious transfer (OT) functionality:
Functionality 1 (1-out-of-2 Oblivious Transfer). The functionality interacts with two parties S and R.
e Parameters. Parties agree on the length of messages n.
e Input. S inputs two messages mg, my € {0,1}™; R inputs a choice bit b € {0,1}.
e Output. R outputs my. S outputs nothing (which we sometimes denote by L).

Recall that this functionality is a fundamental building block in MPC. In particular, we saw how to use
an OT to allow two parties to generate a secret-shared Beaver triple. From this, we were able to construction
our first semi-honest secure 2PC protocol.

Today, we will make concrete our understanding of OT by constructing an OT protocol and proving it
secure. Then, we will return to our fundamentals of security and upgrade our notion of semi-honest security
to handle any number of parties, as well as possibly-randomized functionalities.

Recap of How to Achieve OT

Recall that we sketched one way of how to construct semi-honest 1-out-of-2 OT. In particular, we looked at
how to build OT from (certain kinds of) public key encryption schemes (KeyGen, Enc, Dec):

e The receiver R generates two public keys as follows:

(pky, sky) < KeyGen(\)
Pk, €5 PK(A)

That is, R generates one public key with a matching secret key, and another public key at random. R
sends pk,, pk; to the sender S.

e S encrypts each of its messages with one of the public keys:

¢o < Enc(pky, mop)

¢1 < Enc(pky, mq)
S sends cg, ¢y to R.
e R decrypts the ciphertext ¢, using its single secret key:

Dec(sky, ¢p) = myp

Security of this protocol is based on the security of the underlying public-key encryption scheme.

Let’s now make this a bit more concrete. Our goal will be to reduce the problem of OT to a concrete
computational assumption, and then to prove security of that scheme by constructing simulators.

Do to this, let’s recall some background:

Definition 1 (Finite Cyclic Group). A finite group G is a finite set of elements (often also denoted G)
together with an operation - : G X G — G s.t. the following hold:

e The operation - is associative and has an identity element 14.
o Inverses: For every element h € G, there exists an element h™' € G s.t. h-h™ ! =1g and ™' -h = 14.

The order of G is the number of elements in G. A group G is cyclic if there exists some element g € G,
called the generator, such that every element h € G can be expressed as g* where a € Zg is a number. The
notation g% indicates that g is multiplied with itself a times.

Definition 2 (Decisional Diffie Hellman Assumption). Let Gy denote a family of finite cyclic groups indezxed
by a security parameter X. Let group G = G have order q, and let g be the generator of G. The Decisional
Diffie Hellman problem is hard over family Gy if the following (families of) are indistinguishable:

{ g%, g%, g%® where a,beg Z, }é{ g%, g%, g° where a,b,c g Zq }

It is believed that there are certain families of finite cyclic groups where DDH is hard (for classical
adversaries), such as certain families of elliptic curve groups.
Our OT protocol will be based on a type of public key encryption called El-Gamal encryption:

Definition 3 (El-Gamal Encryption). Parameterized by a family of groups G = G where DDH is assumed
to be hard. Let g be the generator of G and q be the order G.

e KeyGen: Uniformly sample a number sk €g Z,. Then, set pk + g°*.

e Enc(pk,m): Assume that m € G is a group element. Sample a random number r €g Z,. The ciphertext
c is defined as follows:

(grv pkr : m)

e Dec(sk,c): Let ¢ = (co,c1). Compute the following:
c1 - (g ™)

Some notes about this encryption scheme:

e First, the scheme is correct. Namely, Dec(sk, Enc(pk, m)) = m:

1 (cg™) = (pk" -m) - (¢") "
= ((g%)"-m)-(g")
=((g"%)-m)-(g") =m

e Second, the scheme is secure, in the sense that if DDH holds, ciphertexts look uniform to an adversary
who does not know the secret key sk. In particular, for any message m € G and randomly sampled
public key pk, the following ensembles are indistinguishable:

{ (pkv COvcl) where (60761) «— EIlC(pk, m) }é{ (pkv gngl) where 9o, 91 € G }

This is, in fact, quite immediate from DDH: ¢y is a uniform element g" of G by construction, and
c1 = (pk" -m) = g™k . m uses g"'%* as a one-time pad, which is of exactly the form required by the

DDH assumption.

e Third, we sample public keys of this scheme uniformly at random, without calling KeyGen. In particular,
an element g" where r €g Z,, is identically distributed to an ElGamal public key.

Now, if we instantiate our above OT schematic with this particular encryption scheme, the result is
indeed a semi-honest secure 1-out-of-2 OT scheme. We can prove this by constructing simulators.

First, we can show that this OT scheme has perfect security against a corrupted sender. In particular,
the simulator for S is as follows. Recall that the simulator must simulate S’s view, which includes (1) S’s
input, (2) S’s received messages (the two random public keys), and (3) randomness (including randomness

sampled when calling Enc. This can be done simply as follows:

Simg(mg,m1) :

pk, €5 PK
pk, € PK
ro €g Zy randomness from Enc(pk,, mo)
T1 Eg Lg randomness from Enc(pk,,m;)

return (mo, mi, pk()a pklv To, Tl)

Again, this simulated view is identically distributed to the real-world view, because ElGamal public keys
can be sampled uniformly at random.

Simulating the receiver R is a bit trickier, but still possible, based on the security property of ElGamal.
In particular, R’s simulator will not be identically distributed to R’s real-world view, but merely indistin-
guishable from it.

The core of the simulation is that we must explain the two ciphertexts received by R, one corresponding
to myp and one corresponding to mj_;. There are two tricks to realize for this simulation:

e We can simulate the ciphertext corresponding to m; by “encrypting it ourselves”.

e We can simulate the ciphertext corresponding to mj_; by encrypting an arbitrary element of our
choice, say the identity group element 1. This works because of the security of ElGamal and the fact
that R does not hold a secret key for the ciphertext.

Simp (b, my) :
sky €3 Zq
pk, « g%
pk,_;, €5 PK
¢p < Enc(pk,, myp)
c1—p < Enc(pky, 1)

return (b, sky, pk;_y, Co, C1)

Semi-honest Security: Randomization and Multiple Parties
Our working definition for semi-honest security is as follows:

Definition 4 (Two Party Semi-Honest Security (for deterministic computations)). Let f be a computable
function. Let A, B be parties with respective inputs x,y. We say that a protocol I1 securely computes f in the
presence of a semi-honest adversary if for each party, there exists a probabilistic polynomial time algorithm
Simy (resp. Simp)—called a simulator—such that for all inputs x,y, the following hold:

View}(x,y) = Sima(z, f(z,y))

Viewy(z,y) < Simp(z, f(z,y))

There are two shortcomings of this definition:

e It only defines security for two parties. We want a definition that explains security for any number of
parties.

e It only defines security for protocols that compute deterministic output. It can also be desirable to
construct protocols that generate randomized outputs.

Our goal now is to construct a more general definition of semi-honest security that addresses these short-
comings. Let’s start by understanding why the definition does not work for randomized functionalities.

To understand this, let’s define a randomized functionality and then (erroneously) apply Definition 4.
We will see using Definition 4 will allow us to construct protocols that are “secure”, but that clearly defy
our intuition of what should be considered secure.

To see this, let’s revisit a standard notion from cryptography called a pseudorandom function family
(PRF):

Definition 5 (Pseudorandom function family (PRF)). Let K be a keyspace (indexed by a security parameter
A, let D be a domain, and let R be a range. Let F : K X D — R is considered a pseudorandom function
family if the following two programs are indistinguishable:

Real:
private k €g {0,1}*
public lookup(m : D) :
return F(k,m)
<
Ideal :
private dict < empty-dictionary
public lookup(m :D):
if m ¢ dict
dict[m] €5 R

return dict[m]

Intuitively, a pseudorandom function F'(k,-) appears to be a truly random function from the perspective
of an adversary that does not know the key.
Now let’s invent a possibly useful functionality:

Functionality 2 (Use-Once Oblivious PRF). The functionality interacts with two parties A and B.
e Parameters. Parties agree on a PRF F'.
o Input. A has no input. B has an input x € D.
e Output. A outputs a random PRF key k €5 K. B outputs F(k,x).

Note that this functionality is inherently randomized, because it outputs a random key to A. Thus,
Definition 4 inherently cannot be used in the context of this functionality. However, let’s try using it
anyway, to see where things go wrong.

The problem is that our definition of security does not yet provide any insistence that the party’s simulated
view be consistent with the functionality output. In particular, it’s possible to “prove security” of the
following obviously-insecure protocol:

e A uniformly samples key k €¢ K.

e A sends k to B and outputs k.

e B locally computes and outputs F'(k,x).

Indeed, our intuition is that this protocol should be insecure, since the functionality does not say that B
should learn k, but clearly he does.

Exercise 1. Construct simulators for A and B that “prove” this protocol secure in the context of Definition /.

To fix this, we will upgrade our definition of semi-honest security to require that the simulation must
make sense in the context of the outputs of every party:

Definition 6 (Two Party Semi-Honest Security). Let f be a (possibly-randomized) functionality. Let A, B
be parties with respective inputs x,y. We say that a protocol 11 securely computes f in the presence of a
semi-honest adversary if for each party, there exists a probabilistic polynomial time algorithm Simy (resp.
Simp)—called a simulator—such that for all inputs x,y, the following hold:

{ Viewg(r)(x,y),Dutputn(’")(x,y) YE{ (sima(x, 20), (20,21)) where (20,21) < f(z,y) }
{ Viewg(r)(x,y),Dutputn(r)(x,y) }é{ (8imp(y, 21), (20,21)) where (zo,21) < f(z,y) }

Above, TI(r) denotes to run I1 with fized randomness r s.t. A’s view and the output are the result of the same
protocol execution.

Note that the key adjustment to the definition is that each party’s view must be simulated in the context
of a particular functionality output. This rules out our above trivial OPRF protocol.

Exercise 2. Prove that for the above trivial OPRF protocol and for Definition 6, there is no simulator Simpg
for B. Hint: You can use any such Simpg to break the security property of the PRF F in polynomial time,
which is assumed to be impossible.

Now, let’s upgrade our definition to also handle functionalities that involve any number of parties. The
solution here is straightforward: We must construct simulators for every subset of parties:

Definition 7 (Semi-Honest Security). Let f be a (possibly-randomized) n-party functionality running between
parties Py, ..., P,_1. Let P; have input x; We say that a protocol 11 securely computes f in the presence of a
semi-honest adversary if for each subset of parties C C {0, ...,n — 1}, there exists a probabilistic polynomial
time algorithm Simec—called a simulator—such that for all inputs xg, ..., xn_1, the following hold:

{ UViewgi(r)(xi,yi),OutputH(T)(xo,...,xn_l) }
ieC

é{ Simc (U(%yﬂ) where (Yo, -y Yn—1) < f(Z0y ey Xn1) }

iceC

Above, II(r) denotes to run I with fized randomness r s.t. the corrupted subsets’ view and the output are
the result of the same protocol execution.

Exercise 3. (The following is also a homework problem.) The above definition requires us to simulate all
subsets of parties. Consider the 3-party setting. One might naively assume that it suffices to simulate each
size-two subset of corrupted parties, without needing to simulate subsets of size one. Show why this is not
sufficient, i.e. that there are protocols that are (1) secure when you only consider subsets of size two but (2)
insecure when you consider all subsets.

Next Time

We will clean up our understanding of how to achieve MPC with/without OT. We will discuss protocol
composition, show how to generalize our protocol to any number of parties, and discuss fundamental gaps
between perfectly-secure and computationally-secure MPC protocols.

