
Oblivious Transfer
CS 507, Topics in Cryptography: Secure Computation

David Heath

Fall 2025

Last time, we saw our first general-purpose (i.e., one that works for any bounded computable function
f) MPC protocol. Recall that the protocol worked between three semi-honest parties A, B, and D, where
we assumed no two parties collude. In short, the protocol proceeds as follows:

• First, the parties encode f as a Boolean circuit C : {0, 1}n → {0, 1}m. This is possible for any bounded
computable function f . Recall that we set up C such that it consists of INPUTs, OUTPUTs, ANDs,
XORs, and NOTs.

• Next, the parties proceed gate by gate through C, obtain that A and B hold XOR secret shares of the
real value on each wire in C.

• The main non-triviality of the protocol occurs at AND gates. To handle an AND gate, we can assume
A and B hold secret shares of the input wires [a] and [b], and our goal is to compute [a · b]. Recall that
to achieve this, A and B make use of the dealer D, who is asked to deal a uniform Beaver triple:

{ [α], [β], [α · β] where α, β ∈$ {0, 1} }

Given this triple, A and B can exchange a few messages and perform a few local operations to securely
obtain [a · b].

This protocol is surprisingly performant, especially in terms of communication complexity and computation.
However, we discussed that the protocol also has several serious shortcomings.

Today, we will address one of these shortcomings: we will remove the dealer D. This is clearly desirable,
since in general our party A (resp. B) might not trust that B (resp. A) is not working together with D. If
two parties do, in fact, collude, then the privacy of the remaining party is compromised.

Exercise 1. Show how in the context of our protocol from last time, there exist circuits C where parties B
and D can jointly learn A’s entire input x, even when x is not implied by the output of f . Explain how B
and D learn x.

Today we will show how to upgrade our protocol such that it will work for two parties A and B, and we
can remove the need for a dealer D. Note that we will still, for now, be working in the semi-honest model.

The main idea for removing the dealer D will be to emulate D’s existence by means of a cryptographic
protocol. Indeed, our main task question today is as follows: How can parties A and B construct a uniform
Beaver triple [α], [β], [α · β] without either of them learning α or β? To achieve this, we will introduce
cryptographic primitive that is central to the study of secure protocol design: oblivious transfer (OT). In
particular, we will achieve goals:

• We will define OT.

• We will see how to use OT.

• We will see how to construct OT.

1



The OT Functionality

An oblivious transfer (OT) protocol is a cryptographic protocol involving two parties: a sender S and a
receiver R. Roughly, OT works as follows. The sender S has two secret messages m0 and m1. Assume that
the receiver R does not know the content of these messages, but she does know that there are two messages,
and that S has arranged them in the order m0,m1. The receiver R would like to learn one of these messages.
Namely, the receiver R has a selection bit b, and the goal of the protocol is to deliver (only) mb to R.

We can make this more formal by specifying the ideal functionality for OT:

Functionality 1 (1-out-of-2 Oblivious Transfer). The functionality interacts with two parties S and R.

• Parameters. Parties agree on the length of messages n.

• Input. S inputs two messages m0,m1 ∈ {0, 1}n; R inputs a choice bit b ∈ {0, 1}.

• Output. R outputs mb. S outputs nothing (which we sometimes denote by ⊥).

The above functionality is somewhat abstract, and it can be hard to understand. For instance, if R
knows nothing about m0 and nothing about m1, how is it that she knows which one she wants to receive?
In short, OT is typically used not as a “top-level” protocol, but rather as a simple building block by which
to construct more complex protocols. In such scenarios, we can ensure R knows which message she wants,
even though she doesn’t know the content of the messages themselves; this will become clearer when we use
OT to construct larger protocols.

Above, we specified OT as an ideal functionality. Recall that an ideal functionality is a specification that
details precisely what parties are allowed to learn by running a protocol. So a secure OT protocol ensures
that the only information conveyed is that R learns mb. In particular, the protocol ensures that:

• R learns nothing about “other message” m1−b.

• S learns nothing about R’s choice bit b.

How to Use OT

As a warm-up, let’s show that OT can be used to solve non-trivial problems. In particular, let’s solve the
secure AND problem from a few lectures ago:

Functionality 2 (Secure AND). The protocol runs between two parties A and B.

• Input. Party A inputs a bit x ∈ {0, 1}; B inputs a bit y ∈ {0, 1}.

• Output. Both parties output x · y.

Recall that before we used a dealer to solve this problem; now we can solve it by invoking OT:

Protocol 1.

• We will invoke the OT functionality, so we need to assign OT roles to our parties. Let’s say that A
plays the sender S and B plays the receiver R (the other way can also, of course, be made to work).

• Since A is the sender, she must select two messages m0 and m1. In this case, we will set m0 = 0 and
m1 = x.

• Since B is the receiver, he must select a choice bit b. We will set b = y.

• Now, the parties invoke the OT functionality with their inputs. By the definition of OT, B receives the
following:

mb = my =

({
m0 if y = 0

m1 if y = 1

)
=

({
0 if y = 0

x if y = 1

)
=

({
x · y if y = 0

x · y if y = 1

)
= x · y

Thus, B indeed receives x · y.

2



• To complete the protocol, we need to arrange that A also learns x · y. Since we are in the semi-honest
setting, this is easy to arrange: B sends the output x · y to A.

So we can indeed solve the secure AND problem with a single invocation of OT.
Now, let’s work on a slightly harder problem: let’s show how to construct a Beaver triple from two calls

to OT:

Protocol 2. The protocol runs between two parties A and B who wish to construct a uniform, secret-shared
Beaver triple.

• Input. Neither party has input.

• Output. Parties output uniform secret shares [α], [β], [α · β], whereα, β ∈$ {0, 1} are uniform.

• Procedure.

– Our first goal will be to sample uniform secret shares [α] and [β]. This turns out to be easy: A
uniformly samples α0, β0 ∈$ {0, 1}, and B uniformly samples α1, β1 ∈$ {0, 1}. Notice that these
shares implicitly define α and β:

α ≜ α0 ⊕ α1

β ≜ β0 ⊕ β1

Thus, parties hold [α], [β].

– Now, our next goal is to compute [α · β]. To do so, let’s observe the following:

α · β = (α0 ⊕ α1) · (β0 ⊕ β1) = α0 · β0 ⊕ α0 · β1 ⊕ α1 · β0 ⊕ α1 · β1

Thus, our goal is to compute all four summands above, in a secret-shared form. If we can, we can
complete the protocol.

– First, notice that A can locally compute α0 · β0, since she knows both α0andβ0. Similarly, B can
compute α1 ·β1. The main challenge is to compute the cross terms α0 ·β1 and α1 ·β0, where each
party knows only one of the multiplicands.

– Let’s focus on computing α0 · β1 (α1 · β0 will be computed symmetrically). Notice that Protocol 1
can (almost) be used here! However, it turns out that it is not quite secure for the parties to learn
α0 · β1 directly, since this intermediate term is not implied by the protocol output (i.e., it is not
possible to simulate this quantity). Thus, we will instead make the following small adjustment to
Protocol 1 which causes parties to compute secret shares [α0 · β1], rather than α0 · β1 in the clear:
A will act as OT sender. She samples a uniform bit r and sets m0 = r,m1 = r ⊕ α0. B acts
as OT receiver and sets b = β1. B thus receives mb, which basic reasoning reveals is equal to
r ⊕ α0 · β1. Notice that (r, r ⊕ α0 · β1) form an XOR secret share of α0 · β1.

– Parties symmetrically compute the following: (s, s ⊕ α1 · β0), where s is uniform and chosen by
A.

– From here, parties essentially add up what they have seen, and the result is an XOR sharing [α ·β].
More precisely, notice that A now knows the following quantities:

α0 · β0 and s and r

Thus, A can compute the following sum:

α0 · β0 ⊕ s⊕ r

3



and B now knows the following quantities:

α1 · β1 and r ⊕ α0 · β1 and s⊕ α1 · β0

Thus, B can compute the following sum:

α1 · β1 ⊕ r ⊕ α0 · β1 ⊕ s⊕ α1 · β0

It’s easy to see that if the two party sums form a sharing [α · β].
– Parties output their respective shares in [α], [β], [α · β].

Exercise 2. Think about how you would construct simulators for Protocol 2. We technically have not yet
learned how such simulators would work, since Protocol 2 involves invoking another protocol (namely OT)
as a black-box. However, you can reflect on what the rules of such a simulation should be.

Now that we have Protocol 2, we can construct our first general-purpose two-party semi-honest-secure
protocol: The parties just run the same dealer-assisted protocol from last time, but whenever they need a
triple, they invoke Protocol 2.

How to Construct OT

Now that we have seen how an OT protocol can be useful, let’s try to actually build such a protocol. It turns
out that—for the first time in this course—we are confronted with solving a problem that is in some sense
fundamentally hard. In particular, it is known that an Oblivious Transfer protocol requires1 a public-key
encryption scheme. This is in stark contrast to all the other techniques we have seen so far this course, which
have all been constructed from basic information-theoretic techniques.

Note that there are many ways to construct OT. Here, we will investigate a very explicit implementation
of semi-honest 1-out-of-2 OT. The goal is to make the technique as concrete as possible, such that nothing
is left to the imagination.

In particular, we will leverage a computational hardness problem called the Decisional Diffie Hellman
(DDH) assumption to construct OT:

Definition 1 (Finite Cyclic Group). A finite group G is a finite set of elements (often also denoted G)
together with an operation · : G×G → G s.t. the following hold:

• The operation · is associative and has an identity element 1G.

• Inverses: For every element h ∈ G, there exists an element h−1 ∈ G s.t. h ·h−1 = 1G and h−1 ·h = 1G.

The order of G is the number of elements in G. A group G is cyclic if there exists some element g ∈ G,
called the generator, such that every element h ∈ G can be expressed as ga where a ∈ Zq is a number. The
notation ga indicates that g is multiplied with itself a times.

Definition 2 (Decisional Diffie Hellman Assumption). Let Gλ denote a family of finite cyclic groups indexed
by a security parameter λ. Let group G = Gλ have order q, and let g be the generator of G. The Decisional
Diffie Hellman problem is hard over family Gλ if the following (families of) are indistinguishable:

{ ga, gb, ga·b where a, b ∈$ Zq } c
= { ga, gb, gc where a, b, c ∈$ Zq }

It is believed that there are certain families of finite cyclic groups where DDH is hard (for classical
adversaries), such as certain families of elliptic curve groups.

Now, let’s DDH to construct OT. Very roughly the protocol will proceed by observing it is easy to
construct public-key encryption from DDH. In particular, the protocol sketch is as follows:

1Actually, the formal statement is more nuanced than this. Take a look at [IR90] for more details.

4



• The OT receiver R will generate and send to S two public keys pk0 and pk1. However, only one of
these keys will have a corresponding secret key.

• The OT sender will encrypt messagemi with the corresponding public key pki and send the encryptions
to R.

• Since R only has one secret key, she can only decrypt one message.

More formally:

Protocol 3 (DDH-Based Semi-honest OT). Let us assume that S’s messages m0,m1 come from a DDH
group G of order q with generator g. R has choice bit b.

• R uniformly samples a ∈$ Zq. She defines two “public keys”: hb = ga, and h1−b ∈$ G. I.e., hb has a
corresponding “secret key” a, but h1−b does not. R sends h0, h1 to S.

• S samples two random values r0, r1 ∈$ Zq. These are needed to encrypt.

• S sends the following quantities to R:

gr0 and gr1 and hr0
0 ·m0 and hr1

1 ·m1

• R decrypts mb as follows:

hrb
b ·mb

(grb)a
=

(ga)rb ·mb

(grb)a
=

(garb) ·mb

(garb)
= mb

There are two claims to be proved:

• S’s view can be simulated. This is easy to show, as all S receives are two uniformly random elements
from G.

• R’s view can be simulated. This is true, under the assumption that DDH holds. In particular, the
message h

r1−b

1−b ·m1−b looks uniform to R.

Exercise 3. Formally work out the simulation for R.

Next Time

Next time, we will continue to explore OT as a primitive. In addition, we’ve today saw our first instance
of protocol composition. In particular, we’ve seen how to build one protocol in terms of another, simpler
protocol. Technically, we do not yet have any formal notion of security for this composition. We will soon
see will how semi-honest security works in a compositional way.

References

[IR90] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way permuta-
tions. In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 8–26. Springer, New
York, August 1990.

5


