CS 507, Topics in Cryptography: Secure Computation Homework 4

Due: December 10, 2025

Problem 1 (GMW vs GC). Consider the following standard semi-honest 2PC functionality:

- A and B agree on a Boolean circuit C.
- A sends its input $x \in \{0,1\}^n$ to the functionality, and B sends its input $y \in \{0,1\}^n$.
- The functionality computes C(x,y) and sends the output to both A and B.

We have seen two main ways to achieve this functionality: the GMW protocol and a GC-based protocol.

- 1. Provide short discussion: why might one choose to use GMW over GC, and vice versa?
- 2. Suppose the parties wish to compute a function that can be cleanly expressed as the *composition* of two circuits. Namely, they wish to compute $C_1(C_0(x,y))$. They plan to use GC to compute C_0 and GMW to compute C_1 . Assume you have two realizations of the above functionality (one based on GMW and one based on GC), and design a semi-honest secure 2PC protocol that realizes the following functionality:
 - A and B agree on two Boolean circuits C_0, C_1 .
 - A sends its input $x \in \{0,1\}^n$ to the functionality, and B sends its input $y \in \{0,1\}^n$.
 - The functionality computes $C_1(C_0(x,y))$ and sends the output to both A and B.
- 3. Construct simulators that demonstrate your protocol is secure.
- 4. Provide short discussion: why might parties wish to use this protocol that mixes GMW and GC in this way?

Answer 1.

Problem 2 (PIR vs ORAM). We have discussed two very different approaches to securely accessing a memory:

- Oblivious RAM (ORAM) allows a client to outsource its read-write memory to an untrusted server. One way to formalize ORAM is via the following very simple functionality:
 - The client and server agree on a memory size n.

- The client provides as input to the functionality a RAM program P and its input x. That is, P is a program that reads/writes to a memory of size n.
- The functionality sends P(x) to the client, and it sends m to the server, where m is the number of memory reads/writes performed while running P(x).
- **Private information retrieval** (PIR) allows a client to privately fetch an item from a public database held by one or more servers. Let's assume a single-server variant of PIR. One way to formalize PIR is via the following very simple functionality¹:
 - The server inputs a database D.
 - The client inputs an index i
 - The functionality sends D_i to the client and \perp to the server.
- 1. Let us consider a read-only RAM program, where the RAM program P has an initial memory state D, but it only reads to memory, and never writes to it. Assuming PIR and a CPA-secure (or CPA\$-secure) encryption scheme, construct a semi-honest protocol that achieves the above ORAM functionality for such programs. Note: Your client should run in low space, offloading storage of D to the server. As a technical point, the low-space client cannot afford to store its own input database D. Therefore, you may assume that the client can "by magic" read each of its database entries D_i exactly once.
- 2. Prove your protocol is secure by constructing simulators.
- 3. Briefly discuss the advantages/disadvantages of your protocol, in terms of efficiency, as compared to ORAMs we saw in class. When might you protocol make sense/not make sense?

Answer 2.

Problem 3. Please complete the following feedback form. Since this form is not anonymous, feel free to mark "I choose not to respond". To emphasize: your grade on this question will not depend on your answers! I encourage you to answer honestly and give genuine criticism!²

Note: Yes, this counts as a full "problem".

For each of the following statements, please indicate one of the following: I strongly disagree/I disagree/I am undecided/I agree/I strongly agree/I choose not to respond.

- 1. The pace of the course was too fast.
- 2. The homework increased my understanding of course concepts.
- 3. The course should have more assignments.
- 4. The course assignments should be more difficult.
- 5. The course was interesting.

¹In fact, this functionality implies is a slightly stronger version of PIR, sometimes called *symmetric* PIR, where the client learns *only* D_i , and nothing more. In other words, this ensures a notion of privacy for the server. In basic PIR, this is not a requirement.

²Also, please consider filling out the FLEX form, once it is available: go.illinois.edu/flex.

- 6. Office hours were useful.
- 7. I understand the definition of semi-honest security.
- 8. I understand the definition of malicious security.
- 9. I can at a high level explain the GMW protocol.
- 10. I can at a high level explain Garbled Circuits.
- 11. I can at a high level explain the concept of secret sharing/authenticated secret sharing.

Please take the time to write a brief response to the following. Feel free to answer "I choose not to respond".

- 1. What was been the best part of the course?
- 2. What was been the least useful part of the course?
- 3. Is there a topic you wish I covered more/at all?
- 4. Do you have any other suggestions for the course?

Answer 3.